Skip to main content
Log in

High precision determination of the low-energy constants for the two-dimensional quantum Heisenberg model on the honeycomb lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The low-energy constants, namely the staggered magnetization density s per spin, the spin stiffness ρ s , and the spinwave velocity c of the two-dimensional (2-d) spin-1/2 Heisenberg model on the honeycomb lattice are calculated using first principles Monte Carlo method. The spinwave velocity c is determined first through the winding numbers squared. s and ρ s are then obtained by employing the relevant volume- and temperature-dependence predictions from magnon chiral perturbation theory. The periodic boundary conditions (PBCs) implemented in our simulations lead to a honeycomb lattice covering both a rectangular and a parallelogram-shaped region. Remarkably, by appropriately utilizing the predictions of magnon chiral perturbation theory, the numerical values of s , ρ s , and c we obtain for both the considered periodic honeycomb lattice of different geometries are consistent with each other quantitatively. The numerical accuracy reached here is greatly improved. Specifically, by simulating the 2-d quantum Heisenberg model on the periodic honeycomb lattice overlaying a rectangular area, we arrive at s = 0.26882(3), ρ s  = 0.1012(2)J, and c = 1.2905(8)Ja. The results we obtain provide a useful lesson for some studies such as simulating fermion actions on hyperdiamond lattice and investigating second order phase transitions with twisted boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  3. S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

    Article  ADS  Google Scholar 

  4. H. Neuberger, T. Ziman, Phys. Rev. B 39, 2608 (1989)

    Article  ADS  Google Scholar 

  5. P. Hasenfratz, H. Leutwyler, Nucl. Phys. B 343, 241 (1990)

    Article  ADS  Google Scholar 

  6. F.-J. Jiang, U.-J. Wiese, Phys. Rev. B 83, 155120 (2011)

    Article  ADS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. M. Creutz, J. High Energy Phys. 04, 017 (2008)

    Article  ADS  Google Scholar 

  9. A. Borii, Phys. Rev. D 78, 074504 (2008)

    Article  ADS  Google Scholar 

  10. P.F. Bedaque, M.I. Buchoff, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 78, 017502 (2008)

    Article  ADS  Google Scholar 

  11. S. Okubo et al., J. Phys. Soc. Jpn 80, 023705 (2011)

    Article  ADS  Google Scholar 

  12. F.-J. Jiang, F. Kampfer, M. Nyfeler, U.-J. Wiese, Phys. Rev. B 78, 214406 (2008)

    Article  ADS  Google Scholar 

  13. U.-J. Wiese, H.-P. Ying, Z. Phys. B 93, 147 (1994)

    Article  ADS  Google Scholar 

  14. A.W. Sandvik, Phys. Rev. B 56, 18 (1997)

    Google Scholar 

  15. F.-J. Jiang, F. Kämpfer, M. Nyfeler, Phys. Rev. B 80, 033104 (2009)

    Article  ADS  Google Scholar 

  16. S. Wenzel, W. Janke, A.M. Läuchli, Phys. Rev. E 81, 066702 (2010)

    Article  ADS  Google Scholar 

  17. P. Hasenfratz, F. Niedermayer, Z. Phys. B 92, 91 (1993)

    Article  ADS  Google Scholar 

  18. B.B. Beard, U.-J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)

    Article  ADS  Google Scholar 

  19. A.F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187 (2007)

    Article  ADS  Google Scholar 

  20. B. Bauer et al., J. Stat. Mech. P05001 (2011)

  21. F.-J. Jiang, Phys. Rev. B 83, 024419 (2011)

    Article  ADS  Google Scholar 

  22. A. Mattsson, P. Fröjdh, T. Einarsson, Phys. Rev. B 49, 3997 (1994)

    Article  ADS  Google Scholar 

  23. E.V. Castro, N.M.R. Peres, K.S.D. Beach, A.W. Sandvik, Phys. Rev B 73, 054422 (2006)

    Article  ADS  Google Scholar 

  24. Z. Weihong, J. Oitmaa, C.J. Hamer, Phys. Rev. B 44, 11869 (1991)

    Article  ADS  Google Scholar 

  25. J. Oitmaa, C.J. Hamer, Z. Weihong, Phys. Rev. B 45, 9834 (1992)

    Article  ADS  Google Scholar 

  26. S. Wenzel, A.M. Läuchli, Phys. Rev. Lett. 106, 197201 (2011)

    Article  ADS  Google Scholar 

  27. S. Wenzel, A.M. Läuchli, J. Stat. Mech. P09010 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F. High precision determination of the low-energy constants for the two-dimensional quantum Heisenberg model on the honeycomb lattice. Eur. Phys. J. B 85, 402 (2012). https://doi.org/10.1140/epjb/e2012-30784-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30784-7

Keywords

Navigation