On the correlation between supercooling, superheating and kinetic arrest in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3

  • Kaustav Mukherjee
  • Kranti Kumar
  • Alok Banerjee
  • Praveen Chaddah
Regular Article


We report a quantitative investigation of the magnetic field-temperature phase diagram by taking into account a simple phenomenological model arising out of the interplay of kinetic arrest and thermodynamic transitions in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3, through magnetization measurements. Such studies are necessary as kinetic arrest plays an important role in the formation of “magnetic glasses”, which has been observed in systems undergoing first order magnetic phase transitions. It has been shown that disorder in a system results in the formation kinetic arrest (HK,TK) band, like supercooling (H*,T*) and superheating (H**,T**) band. Quantitative proofs are given to show that (HK,TK) band is anticorrelated with (H*,T*) and (H**,T**) bands, while the later two are correlated among themselves. Analysis of time dependence of magnetization at different temperatures is carried out to establish the fact that the kinetic arrested state is different from the supercooled state.


Solid State and Materials 


  1. 1.
    M.K. Chattopadhyay et al., Phys. Rev. B 72, 180401(R) (2005)ADSGoogle Scholar
  2. 2.
    K. Kumar et al., Phys. Rev. B 73, 184435 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    R. Rawat et al., J. Phys.: Condens. Matter 19, 256211 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Banerjee et al., Phys. Rev. B 74, 224445 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    W. Wu et al., Nat. Mater. 5, 881 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Roy et al., Phys. Rev. B 74, 012403 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S.B. Roy et al., Phys. Rev. B 75, 184410 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    P. Chaddah et al., Phys. Rev. B 77, 100402(R) (2008) and references thereinADSCrossRefGoogle Scholar
  9. 9.
    A. Banerjee et al., Phys. Rev. B 79, 212403 (2009) and references thereinADSCrossRefGoogle Scholar
  10. 10.
    A. Banerjee et al., J. Phys.: Condens. Matter 20, 255245 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A. Banerjee et al., J. Phys.: Condens. Matter 21, 026002 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Moore et al., J. Phys.: Condens. Matter 20, 465212 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Phan et al., Sol. State Commun. 150, 341 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Mydosh, Spin glasses (Taylor and Francis, London, 1992)Google Scholar
  15. 15.
    S.B. Roy, M.K. Chattopadhyay, Phys. Rev. B 79, 052407 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.B. Roy, P. Chaddah, Phase Transit. 77, 767 (2004)CrossRefGoogle Scholar
  17. 17.
    S.B. Roy et al., Phys. Rev. Lett. 92, 147203 (2004) and references thereinADSCrossRefGoogle Scholar
  18. 18.
    M.A. Manekar et al., Phys. Rev. B. 64, 104416 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    D. Li et al., Phys. Rev. B. 49, 9601 (1994)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kaustav Mukherjee
    • 1
  • Kranti Kumar
    • 1
  • Alok Banerjee
    • 1
  • Praveen Chaddah
    • 1
  1. 1.UGC-DAE Consortium for Scientific Research, University CampusIndoreIndia

Personalised recommendations