Excitonic processes and their contribution to nonproportionality observed in the light yield of inorganic scintillators

Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials

Abstract

Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the nonproportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator remains mainly excitonic, then nonproportionality can be minimised by inventing a scintillator material with linear radiative rate >107 s−1, linear quenching rate <106 s−1 and track radius ≥70 nm along with maintaining the rates of other nonlinear processes as discovered earlier. If one can increase the linear radiative rate to 109 s−1, then the nonproportionality can be eliminated at a track radius >20 nm.

Keywords

Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials. Guest editors: Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht 

References

  1. 1.
    M. Nikl, Meas. Sci. Technol. 17, R37 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, IEEE Trans. Nucl. Sci. NS-42, 2190 (1995)Google Scholar
  3. 3.
    M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengesha, J.D. Valentine, Nucl. Instrum. Methods Phys. Res. A 484, 259 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    I.V. Khodyuk, P. Dorenbos, J. Phys.: Condens. Matter 22, 485402 (2010)CrossRefGoogle Scholar
  5. 5.
    G.E. Bizarri, W.W. Moses, J. Singh, A.N. Vasile’v, R.T. Williams, J. Appl. Phys. 105, 044507 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J. Singh, J. Appl. Phys. 110, 024503 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    P. Prusa, T. Cechok, J.A. Mares, M. Nikl, A. Beitlerova, N. Solviera, Yu. V. Zrenko, J. Tous, K. Blazek, Appl. Phys. Lett. 92, 041903 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Li Qi, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, Nucl. Instrum. Methods Phys. Res. A 652, 284 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R.T. Williams, J.Q. Grim, Qi Li, K.B. Ucer, W.W. Moses, Phys. Status Solidi B 248, 426 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Qi Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, J. Appl. Phys. 109, 123716 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Singh, A. Koblov, IEEE Trans. Nucl. Sci. 59, 2045 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Singh, A. Koblov, Nucl. Instrum. Methods Phys. Res. A 685, 25 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H. Bethe, Ann. Physik. (Berlin) 5, 325 (1930)ADSMATHCrossRefGoogle Scholar
  14. 14.
    J.E. Jaffe, Nucl. Instrum. Methods Phys. Res. A 580, 1372 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P.A. Rodnyi, Rad. Meas. 38, 343 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Singh, I.-K. Oh, J. Appl. Phys. 97, 063516 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    J. Singh, Phys. Rev. B 76, 085205 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    J. Singh, Phys. Status Solidi A 208, 1809 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Adachi, M.A. Baldo, M.E. Thompson, S.E. Forrest, J. Appl. Phys. 90, 5048 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J. Wilkinson, K.B. Ucer, R.T. Williams, Rad. Meas. 38, 501 (2004)CrossRefGoogle Scholar
  21. 21.
    K. Shibuya, M. Koshimizu, H. Murakami, Y. Muroya, Y. Katsumura, K. Asai, Jpn J. Appl. Phys. 43, L1333 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Engineering and IT, B-purple-12, Faculty of EHSECharles Darwin UniversityDarwinAustralia

Personalised recommendations