Skip to main content
Log in

Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We discuss the magnetocaloric properties of gadolinium containing magnetic molecules, which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions, we evaluate the necessary thermodynamic observables by means of the finite-temperature Lanczos method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Giauque, D. MacDougall, Phys. Rev. 43, 768 (1933)

    Article  ADS  Google Scholar 

  2. M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, E.K. Brechin, E.J. McInnes, Appl. Phys. Lett. 87, 072504 (2005)

    Article  ADS  Google Scholar 

  3. M. Manoli, R.D.L. Johnstone, S. Parsons, M. Murrie, M. Affronte, M. Evangelisti, E.K. Brechin, Angew. Chem. Int. Ed. 46, 4456 (2007)

    Article  Google Scholar 

  4. M. Evangelisti, A. Candini, M. Affronte, E. Pasca, L.J. de Jongh, R.T.W. Scott, E.K. Brechin, Phys. Rev. B 79, 104414 (2009)

    Article  ADS  Google Scholar 

  5. J.W. Sharples, Y.-Z. Zheng, F. Tuna, E.J.L. McInnes, D. Collison, Chem. Commun. 47, 7650 (2011)

    Article  Google Scholar 

  6. Y.-Z. Zheng, M. Evangelisti, R.E.P. Winpenny, Chem. Sci. 2, 99 (2011)

    Article  Google Scholar 

  7. T.N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti, E.K. Brechin, Angew. Chem. Int. Ed. 51, 4633 (2012)

    Article  Google Scholar 

  8. R. Sessoli, Angew. Chem. Int. Ed. 51, 43 (2012)

    Article  Google Scholar 

  9. R. Schnalle, J. Schnack, Phys. Rev. B 79, 104419 (2009)

    Article  ADS  Google Scholar 

  10. R. Schnalle, J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010)

    Article  Google Scholar 

  11. J. Jaklic, P. Prelovsek, Phys. Rev. B 49, 5065 (1994)

    Article  ADS  Google Scholar 

  12. J. Jaklic, P. Prelovsek, Adv. Phys. 49, 1 (2000)

    Article  ADS  Google Scholar 

  13. J. Schnack, O. Wendland, Eur. Phys. J. B 78, 535 (2010)

    Article  ADS  Google Scholar 

  14. K. Graham, F.J. Douglas, J.S. Mathieson, S.A. Moggach, J. Schnack, M. Murrie, Dalton Trans. 40, 12271 (2011)

    Article  Google Scholar 

  15. M.E. Zhitomirsky, Phys. Rev. B 67, 104421 (2003)

    Article  ADS  Google Scholar 

  16. J. Schnack, R. Schmidt, J. Richter, Phys. Rev. B 76, 054413 (2007)

    Article  ADS  Google Scholar 

  17. A. Honecker, M.E. Zhitomirsky, J. Phys.: Conf. Ser. 145, 012082 (2009)

    Article  ADS  Google Scholar 

  18. J. Schnack, Dalton Trans. 39, 4677 (2010)

    Article  Google Scholar 

  19. M.-J. Martínez-Pérez, O. Montero, M. Evangelisti, F. Luis, J. Sesé, S. Cardona-Serra, E. Coronado, Adv. Mater. 24, 4301 (2012)

    Article  Google Scholar 

  20. M. Aichhorn, M. Daghofer, H.G. Evertz, W. von der Linden, Phys. Rev. B 67, 161103 (2003)

    Article  ADS  Google Scholar 

  21. J.C. Plakatouras, I. Baxter, M.B. Hursthouse, K.M.A. Malik, J. McAleese, S.R. Drake, J. Chem. Soc., Chem. Commun. 21, 2455 (1994)

    Article  Google Scholar 

  22. B.-Q. Ma, D.-S. Zhang, S. Gao, T.-Z. Jin, C.-H. Yan, New J. Chem. 24, 251 (2000)

    Article  Google Scholar 

  23. B.-Q. Ma, D.-S. Zhang, S. Gao, T.-Z. Jin, C.-H. Yan, G.-X. Xu, Angew. Chem. Int. Ed. 39, 3644 (2000)

    Article  Google Scholar 

  24. A. Rohde, W. Urland, Dalton Trans. 2974 (2006)

  25. N. Kato, T. Mita, M. Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc. 128, 6768 (2006)

    Article  Google Scholar 

  26. X.-J. Kong, L.-S. Long, L.-S. Zheng, R. Wang, Z. Zheng, Inorg. Chem. 48, 3268 (2009)

    Article  Google Scholar 

  27. K. Bärwinkel, H.-J. Schmidt, J. Schnack, J. Magn. Magn. Mater. 212, 240 (2000)

    Article  ADS  Google Scholar 

  28. M.E. Zhitomirsky, A. Honecker, J. Stat. Mech.: Theor. Exp. P07012 (2004)

  29. J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56, 863 (2001)

    Article  ADS  Google Scholar 

  30. S. Sanz, R.D. McIntosh, C.M. Beavers, S.J. Teat, M. Evangelisti, E.K. Brechin, S.J. Dalgarno, Chem. Commun. 48, 1449 (2012)

    Article  Google Scholar 

  31. J. Schnack, P. Hage, H.-J. Schmidt, J. Comput. Phys. 227, 4512 (2008)

    Article  ADS  MATH  Google Scholar 

  32. E.R. Gagliano, E. Dagotto, A. Moreo, F.C. Alcaraz, Phys. Rev. B 34, 1677 (1986)

    Article  ADS  Google Scholar 

  33. H.Q. Lin, Phys. Rev. B 42, 6561 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnack, J., Heesing, C. Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules. Eur. Phys. J. B 86, 46 (2013). https://doi.org/10.1140/epjb/e2012-30546-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30546-7

Keywords

Navigation