Characteristics of cavity polaritons in a CuBr microcavity

Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials

Abstract

We report the characteristics of cavity polaritons in a CuBr microcavity consisting of a λ/2-thick CuBr active layer and HfO2/SiO2 distributed Bragg reflectors: λ corresponds to an effective resonant wavelength of the lowest-lying exciton. The excitonic system of a CuBr crystal has three kinds of excitons labeled Zf, Z1,2, and Z3 in which the Zf exciton originates from a triplet state. We have investigated the dispersion relations of the cavity polaritons in the CuBr microcavity with the use of angle-resolved reflectance spectroscopy. The experimental results demonstrate the formation of four cavity-polariton branches due to the strong coupling between the Zf, Z1,2, and Z3 excitons and cavity photon. The cavity-polariton dispersions were well analyzed with a phenomenological Hamiltonian for the strong coupling. The evaluated Rabi-splitting energies are 28, 95, and 74 meV for the Zf, Z1,2, and Z3 excitons, respectively. These Rabi-splitting energies reflect the magnitudes of the oscillator strengths of the relevant excitons. Furthermore, it was confirmed that the cavity polaritons are fully stable at room temperature. We discuss the temperature dependence of the cavity-polariton energies and detuning, comparing with that of the bare exciton.

Keywords

Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular 

References

  1. 1.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, in Microcavities (Oxford University Press, Oxford, 2007)Google Scholar
  2. 2.
    S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zuniga-Pérez, M. Leroux, F. Semond, S. Bouchoule, Appl. Phys. Lett. 99, 161104 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kasprzak, D.D. Solnyshkov, R. André, Le Si Dang, G. Malpuech, Phys. Rev. Lett. 101, 146404 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, G. Malpuech, Phys. Rev. B 81, 125305 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, J. Massies, Phys. Rev. B 68, 153313 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    I.R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, A.A. Khalifa, Phys. Rev. B 74, 193308 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    F. Réveret, P. Disseix, J. Leymarie, A. Vasson, F. Semond, M. Leroux, J. Massies, Phys. Rev. B 77, 195303 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, Phys. Rev. B 65, 161205(R) (2002)ADSCrossRefGoogle Scholar
  12. 12.
    R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, H. Morkoc, Appl. Phys. Lett. 92, 011127 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Nakayama, S. Komura, T. Kawase, D. Kim, J. Phys. Soc. Jpn 77, 093705 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    T. Kawase, D. Kim, K. Miyazaki, M. Nakayama, Phys. Stat. Sol. B 248, 460 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J.C. Moreno, M. Leroux, S. Faure, T. Guillet, Phys. Rev. B 79, 125302 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura, Excitonic Processes in Solids (Springer, New York, 1986), p. 116Google Scholar
  17. 17.
    M. Nakayama, A. Soumura, K. Hamasaki, H. Takeuchi, H. Nishimura, Phys. Rev. B 55, 10099 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    G. Oohata, T. Nishioka, D. Kim, H. Ishihara, M. Nakayama, Phys. Rev. B 78, 233304 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Nakayama, K. Miyazaki, T. Kawase, D. Kim, Phys. Rev. B 83, 075318 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Nakayama, M. Kameda, T. Kawase, D. Kim, Phys. Rev. B 83, 235325 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nakayama, Y. Kanatani, T. Kawase, D. Kim, Phys. Rev. B 85, 205320 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Suga, K. Cho, M. Bettini, Phys. Rev. B 13, 943 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    K. Miyazaki, D. Kim, T. Kawase, M. Kameda, M. Nakayama, Jpn J. Appl. Phys. 49, 042802 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Chen, A. Tredicucci, F. Bassani, Phys. Rev. B 52, 1800 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski, Phys. Rev. B 59, 5082 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993), p. 169Google Scholar
  28. 28.
    Y.P. Varshni, Physica. 34, 149 (1967)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied Physics, Graduate School of EngineeringOsaka City UniversityOsakaJapan

Personalised recommendations