Statistical characterization of an ensemble of functional neural networks

  • B. B. M. Silva
  • J. G. V. Miranda
  • G. Corso
  • M. Copelli
  • N. Vasconcelos
  • S. Ribeiro
  • R. F. S. Andrade
Regular Article


This work uses a complex network approach to analyze temporal sequences of electrophysiological signals of brain activity from freely behaving rats. A network node represents a neuron and a network link is included between a pair of nodes whenever their firing rates are correlated. The framework of time varying graph (TVG) is used to deal with a very large number (>30 000) of time dependent networks, which are set up by taking into account correlations between neuron firing rates in a moving time lag window of suitable width. Statistical distributions for the following network measures are obtained: size of the largest connected cluster, number of edges, average node degree, and average minimal path. We find that the number of networks with highly correlated activity in distinct brain areas has a fat-tailed distribution, irrespective of the behavioral state of the animal. This contrasts with short-tailed distributions for surrogates obtained by shuffling the original data, and reflects the fact that neurons in the neocortex and hippocampus often act in precise temporal coordination. Our results also suggest that functional neuronal networks at the millimeter scale undergo statistically nontrivial rearrangements over time, thus delimitating an empirical constraint for models of brain activity.


Statistical and Nonlinear Physics 


  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMATHCrossRefGoogle Scholar
  2. 2.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, 2003)Google Scholar
  4. 4.
    M.E.J. Newman, A.-L. Barabási, D.J. Watts, The Structure and Dynamics of Networks (Princeton University Press, 2006)Google Scholar
  5. 5.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    L.F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Principles of Neural Science, edited by E.R. Kandel, J.H. Schwartz, T.M. Jessel, 4th edn. (McGraw Hill, New York, 2000)Google Scholar
  8. 8.
    E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009)CrossRefGoogle Scholar
  9. 9.
    O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, Trends Cogn. Sci. 8, 418 (2004)CrossRefGoogle Scholar
  10. 10.
    O. Sporns, G. Tononi, R. Kötter, PLoS Comput. Biol. 1, e42 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    V.M. Eguíluz, D.R. Chialvo, G.A. Cecchi, Marwan Baliki, A. Vania Apkarian, Phys. Rev. Lett. 94, 018102 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    D. Fraiman, P. Balenzuela, J. Foss, D.R. Chialvo, Phys. Rev. E 79, 061922 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P. Bonifazi, M. Goldin, M.A. Picardo, I. Jorquera, A. Cattani, G. Bianconi, A. Represa, Y. Ben-Ari, R. Cossart, Science 326, 1419 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    L. de Arcangelis, C. Perrone-Capano, H.J. Herrmann, Phys. Rev. Lett. 96, 0281071-4 (2006)Google Scholar
  15. 15.
    A. Levina, J.M. Herrmann, T. Geisel, in Advances in Neural Information Processing Systems, edited by Y. Weiss, B. Schölkopf, J. Platt (MIT Press, Cambridge, MA, 2006), Vol. 18, pp. 771–778Google Scholar
  16. 16.
    A. Levina, J.M. Herrmann, T. Geisel, Natl. Phys. 3, 857 (2007)CrossRefGoogle Scholar
  17. 17.
    L. de Arcangelis, H.J. Herrmann, Proc. Nat. Acad. Sci. 107, 3977 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C. Sherrington, E.D. Adrian, Nobel Lectures, Physiology or Medicine (Elsevier Publishing Company, Amsterdam, 1965), pp. 1922–1941Google Scholar
  19. 19.
    J. Kralik, D. Dimitrov, D. Krupa, D. Katz, D. Cohen, Methods 25, 121 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Ribeiro, D. Gervasoni, E.S. Soares, Y. Zhou, S.C. Lin, P. Pantoja, M. Lavine, M.A.L. Nicolelis, PLoS Biol. 2, 126 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Ribeiro, X. Shi, M. Engelhard, Y. Zhou, H. Zhang, D. Gervasoni, S.C. Lin, K. Wada, N.A. Lemos, M.A.L. Nicolelis, Front. Neurosci. 1, 43 (2007)CrossRefGoogle Scholar
  22. 22.
    M.A.L. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, Steven P. Wise, Proc. Natl. Acad. Sci. USA 100, 11041 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    D. Gervasoni, S.C. Lin, S. Ribeiro, E.S. Soares, J. Pantoja, M.A.L. Nicolelis, J. Neurosci. 24, 11137 (2004)CrossRefGoogle Scholar
  24. 24.
    M.A.L. Nicolelis, M.A. Lebedev, Nat. Rev. Neurosci. 10, 530 (2009)CrossRefGoogle Scholar
  25. 25.
    P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001)Google Scholar
  26. 26.
    M.I. Posner, Chronometric explorations of Mind (Oxford University Press, USA), 1986Google Scholar
  27. 27.
    E. Brenner, J.B.J. Smeets, J. Mot. Behav. 29, 297 (1997)CrossRefGoogle Scholar
  28. 28.
    N.A.P. Vasconcelos, J. Pantoja, H. Belchior, F.V. Caixeta, J. Faber, M.A.M. Freire, V.R. Cota, E.A. de Macedo, D.A. Laplagne, H.H. Gomes, S. Ribeiro, Proc. Natl. Acad. Sci. USA 108, 15408 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    N.A.P. Vasconcelos, W.Blanco, J. Faber, H.M. Gomes, T.M. Barros, S. Ribeiro, in The Relevance of the Time Domain to Neural Network Models, edited by A.R. Rao, G.A. Cecchi (Springer Series in Cognitive and Neural Systems, Springer, 2011)Google Scholar
  30. 30.
    I.H. Stevenson, J.M. Rebesco, L.E. Miller, K.P. Körding, Curr. Opin. Neurobiol. 18, 582 (2008)CrossRefGoogle Scholar
  31. 31.
    J.W. Pillow, J. Shlens, L. Paninski, A. Sher, A.M. Litke, E.J. Chichilnisky, E.P. Simoncelli, Nature 454, 995 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    E. Schneidman, M.J. Berry, R. Segev, W. Bialek, Nature 440, 1007 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    G. Tkačik, E. Schneidman, M.J. Berry, W. Bialek, arXiv:q-bio.NC/0611072, (2006)Google Scholar
  34. 34.
    E. Ganmor, R. Segev, E. Schneidman, J. Neurosci. 31, 3044 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, F. Amblard, in 3rd AISB Social Networks and Multiagent Systems Symposium (SNAMAS), 2011, edited by AISB (York, UK), pp. 32–38Google Scholar
  36. 36.
    W. Quattrociocchi, F. Amblard, E. Galeota, Social Network Analysis and Mining 2, 229 (2012)CrossRefGoogle Scholar
  37. 37.
    V. Kostakos, Physica A 388, 1007 (2009)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    R.R. Sokal, F.J. Rohlf, The Principles and Practices of Statistics in Biological Research (W.H. Freeman and Co., New York, 1995)Google Scholar
  39. 39.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    A. Klaus, S. Yu, D. Plenz, PloS ONE 6, e19779 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    T.L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D.R. Chialvo, M.A.L. Nicolelis, S. Ribeiro, PloS ONE 5, 14129 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    O. Kinouchi, M. Copelli, Nat. Phys. 2, 348 (2006)CrossRefGoogle Scholar
  43. 43.
    W. Shew, H. Yang, T. Petermann, R. Roy, D. Plenz, J. Neurosci. 29,15595 (2009)CrossRefGoogle Scholar
  44. 44.
    S. Ribeiro, M.A.L. Nicolelis, Learn. Memory 11, 686 (2004)CrossRefGoogle Scholar
  45. 45.
    T. Petermann, T.C. Thiagarajana, M.A. Lebedevb, M.A.L. Nicolelis, D.R. Chialvo, D. Plenza, Proc. Natl. Acad. Sci. 106, 15921 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    M.A. Wilson, B.L. McNaughton, Science 265, 676 (1994)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. B. M. Silva
    • 1
  • J. G. V. Miranda
    • 1
  • G. Corso
    • 2
  • M. Copelli
    • 3
  • N. Vasconcelos
    • 4
    • 5
  • S. Ribeiro
    • 5
  • R. F. S. Andrade
    • 1
  1. 1.Instituto de FísicaUniversidade Federal da BahiaSalvadorBrazil
  2. 2.Departamento de Biofísica e Farmacologia, Centro de BiociênciasUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil
  4. 4.Departamento de Sistemas e ComputaçãoUniversidade Federal de Campina GrandeCampina GrandeBrazil
  5. 5.Instituto do CérebroUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations