Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential

Abstract

The statistical properties of overlap sums of groups of four eigenfunctions of the Anderson model for localization as well as combinations of four eigenenergies are computed. Some of the distributions are found to be scaling functions, as expected from the scaling theory for localization. These enable to compute the distributions in regimes that are otherwise beyond the computational resources. These distributions are of great importance for the exploration of the nonlinear Schrödinger equation (NLSE) in a random potential since in some explorations the terms we study are considered as noise and the present work describes its statistical properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Article  Google Scholar 

  2. 2.

    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    ADS  Article  Google Scholar 

  3. 3.

    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 25, R53 (2012)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  4. 4.

    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 22, 2861 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. 5.

    Y. Krivolapov, S. Fishman, A. Soffer, New J. Phys. 12, 063035 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    S. Flach, D. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    C. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  9. 9.

    E. Michaely, S. Fishman, Phys. Rev. E 85, 046218 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    K. Ishii, Suppl. Prog, Theor. Phys. 53, 77 (1973)

    ADS  Article  Google Scholar 

  11. 11.

    I.M. Lifshits, L.A. Pastur, S.A. Gredeskul, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988)

  12. 12.

    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Burlington, MA, London, 2007), Vol. 4

  13. 13.

    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, New York, 2003)

  17. 17.

    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    ADS  Article  Google Scholar 

  18. 18.

    L.P. Pitaevskii, JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  19. 19.

    E.P. Gross, Nuovo Cimento 20, 454 (1961)

    MATH  Article  Google Scholar 

  20. 20.

    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. Lett. 71, 412 (1993)

    ADS  Article  Google Scholar 

  21. 21.

    Y. Roth, A. Cohen, B. Shapiro, Phys. Rev. B 38, 12125 (1988)

    ADS  Article  Google Scholar 

  22. 22.

    B. Derrida, E. Gardner, J. Phys. France 45, 1283 (1984)

    MathSciNet  Article  Google Scholar 

  23. 23.

    H. Veksler, Y. Krivolapov, S. Fishman, Phys. Rev. E 81, 017201 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  24. 24.

    A. Rivkind, Y. Krivolapov, S. Fishman, A. Soffer, J. Phys. A: Math. Theor. 44, 305206 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Michaely.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michaely, E., Fishman, S. Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential. Eur. Phys. J. B 85, 362 (2012). https://doi.org/10.1140/epjb/e2012-30435-1

Download citation

Keywords

  • Statistical and Nonlinear Physics