Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential

  • E. MichaelyEmail author
  • S. Fishman
Regular Article


The statistical properties of overlap sums of groups of four eigenfunctions of the Anderson model for localization as well as combinations of four eigenenergies are computed. Some of the distributions are found to be scaling functions, as expected from the scaling theory for localization. These enable to compute the distributions in regimes that are otherwise beyond the computational resources. These distributions are of great importance for the exploration of the nonlinear Schrödinger equation (NLSE) in a random potential since in some explorations the terms we study are considered as noise and the present work describes its statistical properties.


Statistical and Nonlinear Physics 


  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 25, R53 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 22, 2861 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Y. Krivolapov, S. Fishman, A. Soffer, New J. Phys. 12, 063035 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Flach, D. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    C. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    E. Michaely, S. Fishman, Phys. Rev. E 85, 046218 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    K. Ishii, Suppl. Prog, Theor. Phys. 53, 77 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    I.M. Lifshits, L.A. Pastur, S.A. Gredeskul, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988)Google Scholar
  12. 12.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Burlington, MA, London, 2007), Vol. 4Google Scholar
  13. 13.
    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, New York, 2003)Google Scholar
  17. 17.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    L.P. Pitaevskii, JETP 13, 451 (1961)MathSciNetGoogle Scholar
  19. 19.
    E.P. Gross, Nuovo Cimento 20, 454 (1961)zbMATHCrossRefGoogle Scholar
  20. 20.
    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. Lett. 71, 412 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Roth, A. Cohen, B. Shapiro, Phys. Rev. B 38, 12125 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    B. Derrida, E. Gardner, J. Phys. France 45, 1283 (1984)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Veksler, Y. Krivolapov, S. Fishman, Phys. Rev. E 81, 017201 (2010)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    A. Rivkind, Y. Krivolapov, S. Fishman, A. Soffer, J. Phys. A: Math. Theor. 44, 305206 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics Department, Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations