Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential

  • 148 Accesses

Abstract

The statistical properties of overlap sums of groups of four eigenfunctions of the Anderson model for localization as well as combinations of four eigenenergies are computed. Some of the distributions are found to be scaling functions, as expected from the scaling theory for localization. These enable to compute the distributions in regimes that are otherwise beyond the computational resources. These distributions are of great importance for the exploration of the nonlinear Schrödinger equation (NLSE) in a random potential since in some explorations the terms we study are considered as noise and the present work describes its statistical properties.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.W. Anderson, Phys. Rev. 109, 1492 (1958)

  2. 2.

    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

  3. 3.

    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 25, R53 (2012)

  4. 4.

    S. Fishman, Y. Krivolapov, A. Soffer, Nonlinearity 22, 2861 (2009)

  5. 5.

    Y. Krivolapov, S. Fishman, A. Soffer, New J. Phys. 12, 063035 (2010)

  6. 6.

    G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)

  7. 7.

    S. Flach, D. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)

  8. 8.

    C. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)

  9. 9.

    E. Michaely, S. Fishman, Phys. Rev. E 85, 046218 (2012)

  10. 10.

    K. Ishii, Suppl. Prog, Theor. Phys. 53, 77 (1973)

  11. 11.

    I.M. Lifshits, L.A. Pastur, S.A. Gredeskul, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988)

  12. 12.

    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Burlington, MA, London, 2007), Vol. 4

  13. 13.

    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

  14. 14.

    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

  15. 15.

    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

  16. 16.

    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, New York, 2003)

  17. 17.

    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

  18. 18.

    L.P. Pitaevskii, JETP 13, 451 (1961)

  19. 19.

    E.P. Gross, Nuovo Cimento 20, 454 (1961)

  20. 20.

    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. Lett. 71, 412 (1993)

  21. 21.

    Y. Roth, A. Cohen, B. Shapiro, Phys. Rev. B 38, 12125 (1988)

  22. 22.

    B. Derrida, E. Gardner, J. Phys. France 45, 1283 (1984)

  23. 23.

    H. Veksler, Y. Krivolapov, S. Fishman, Phys. Rev. E 81, 017201 (2010)

  24. 24.

    A. Rivkind, Y. Krivolapov, S. Fishman, A. Soffer, J. Phys. A: Math. Theor. 44, 305206 (2011)

Download references

Author information

Correspondence to E. Michaely.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michaely, E., Fishman, S. Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential. Eur. Phys. J. B 85, 362 (2012). https://doi.org/10.1140/epjb/e2012-30435-1

Download citation

Keywords

  • Statistical and Nonlinear Physics