Skip to main content
Log in

Cooperation and its evolution in growing systems with cultural reproduction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We explore the evolution of cooperation in the framework of the evolutionary game theory using the prisoner’s dilemma as metaphor of the problem. We present a minimal model taking into account the growing process of the systems and individuals with imitation capacity. We consider the topological structure and the evolution of strategies decoupled instead of a coevolutionary dynamic. We show conditions to build up a cooperative system with real topological structures for any natural selection intensity. When the system starts to grow, cooperation is unstable but becomes stable as soon as the system reaches a small core of cooperators whose size increases when the intensity of natural selection decreases. Thus, we reduce the evolution of cooperative systems with cultural reproduction to justify a small initial cooperative structure that we call cooperative seed. Otherwise, given that the system grows principally as cooperator whose cooperators inhabit the most linked parts of the system, the benefit-cost ratio required for cooperation evolve is drastically reduced compared to the found in static networks. In this way, we show that in systems whose individuals have imitation capacity the growing process is essential for the evolution of cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.O. Wilson, Sociobiology (Harvard University Press, Cambridge, Massachusetts, 1975)

  2. J. Maynard-Smith, E. Szathmáry, The Major Transitions in Evolution (Oxford University Press, Freeman, Oxford, 1995)

  3. R.E. Michod, Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality (Princeton University Press, Princeton, NJ, 1999)

  4. R. Trivers, Q. Rev. Biol. 46, 35 (1971)

    Article  Google Scholar 

  5. W.D. Hamilton, J. Theor. Biol. 7, 1 (1964)

    Article  Google Scholar 

  6. R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M.A. Nowak, Science 314, 1560 (2006)

    Article  ADS  Google Scholar 

  8. M.A. Nowak, K. Sigmund, Nature 364, 56 (1993)

    Article  ADS  Google Scholar 

  9. R.L. Riolo, M.D. Cohen, R. Axelrod, Nature 414, 441 (2001)

    Article  ADS  Google Scholar 

  10. M.A. Nowak, K. Sigmund, Nature 437, 1291 (2005)

    Article  ADS  Google Scholar 

  11. A. Arenas, J. Camacho, J.A. Cuesta, R. Requejo, J. Theor. Biol. 279, 113 (2011)

    Article  Google Scholar 

  12. J. Sanjay, K. Sandeep, Proc. Natl. Acad. Sci. 98, 543 (2001)

    Article  Google Scholar 

  13. F.C. Santos, M.D. Santos, J.M. Pacheco, Nature 454, 212 (2008)

    ADS  Google Scholar 

  14. E. Fehr, S. Gächter, Nature 415, 137 (2002)

    Article  ADS  Google Scholar 

  15. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, England, 1998)

  16. H. Gintis, Game Theory Evolving (Princeton University, Princeton, NJ, 2000)

  17. H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006)

    Article  ADS  Google Scholar 

  18. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  19. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  20. F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. 103, 3490 (2006)

    Article  ADS  Google Scholar 

  21. Y.-S Chen, H. Lin, C.-X. Wu, Physica A 385, 379 (2006)

    Article  ADS  Google Scholar 

  22. A. Antonioni, M. Tomassini, Advs. Compl. Syst. 15, 12546 (2012)

    MathSciNet  Google Scholar 

  23. G. Abramson, M. Kuperman, Phys. Rev. E 63, 030901 (2001)

    Article  ADS  Google Scholar 

  24. S. Assenza, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 017101 (2008)

    Article  ADS  Google Scholar 

  25. J. Gómez-Gardeñes, M. Campillo, L.M. Floría, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007)

    Article  ADS  Google Scholar 

  26. X. Chen, F. Fu, L. Wang, Physica A 378, 512 (2008)

    Article  ADS  Google Scholar 

  27. L. Luthi, E. Pestelacci, M. Tomassini, Physica A 387, 955 (2008)

    Article  ADS  Google Scholar 

  28. Y.-K. Liu, Z. Li, X.-J. Chen, L. Wang, Chin. Phys. Lett. 26, 048902 (2009)

    Article  ADS  Google Scholar 

  29. F. Fu, L.H. Liu, L. Wang, Eur. Phys. J. B 56, 367 (2007)

    Article  ADS  Google Scholar 

  30. F. Fu, X. Chen, L. Liu, L. Wang, Phys. Lett. A 371, 58 (2007)

    Article  ADS  MATH  Google Scholar 

  31. Z.-X. Wu, J.-Y. Guan, X.-J. Xu, Y.-H. Wang, Physica A 379, 672 (2007)

    Article  ADS  Google Scholar 

  32. N. Masuda, Proc R. Soc. B 274, 1815 (2007)

    Article  MathSciNet  Google Scholar 

  33. A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 (2008)

    Article  ADS  Google Scholar 

  34. G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  35. C.P. Roca, J.A. Cuesta, A. Sánchez, Phys. Life Rev. 6, 208 (2009)

    Article  ADS  Google Scholar 

  36. J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006)

    Article  ADS  Google Scholar 

  37. F.C. Santos, J.M. Pacheco, T. Lenaerts, PLoS Comput. Biol. 2, 1284 (2006)

    Article  Google Scholar 

  38. J.M. Pacheco, A. Traulsen, H. Ohtsuki, M.A. Nowak, J. Theor. Biol. 250, 723 (2007)

    Article  MathSciNet  Google Scholar 

  39. J. Poncela, J. Gómez-Gardeñes, L.M. Floría, A. Sánchez, Y. Moreno, PLoS ONE 3, e2449 (2008)

    Article  ADS  Google Scholar 

  40. J. Poncela, J. Gómez-Gardeñes, A. Traulsen, Y. Moreno, New J. Phys. 11, 083031 (2009)

    Article  ADS  Google Scholar 

  41. M. Perc, A. Szolnoki, Biosystems 99, 109 (2010)

    Article  Google Scholar 

  42. A. Traulsen, J.M. Pacheco, M.A. Nowak, J. Theor. Biol. 246, 522 (2007)

    Article  MathSciNet  Google Scholar 

  43. G. Szabó, C. Töke, Phys. Rev. E 58, 69 (1998)

    Article  ADS  Google Scholar 

  44. C. Hauert, G Szabó, Am. J. Phys. 73, 405 (2005)

    Article  ADS  MATH  Google Scholar 

  45. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  46. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. T. Antal, I. Scheuring, Bull. Math. Biol. 68, 1923 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Gomez Portillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez Portillo, I. Cooperation and its evolution in growing systems with cultural reproduction. Eur. Phys. J. B 85, 409 (2012). https://doi.org/10.1140/epjb/e2012-30405-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30405-7

Keywords

Navigation