Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems

Colloquium

Abstract

Heat conduction is an important energy transport process in nature. Phonon is the major energy carrier for heat in semiconductors and dielectric materials. In analogy to Ohm’s law of electrical conduction, Fourier’s law is the fundamental law of heat conduction in solids. Although Fourier’s law has received great success in describing macroscopic heat conduction in the past two hundred years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat conduction in low dimensional systems, including lattice models and low dimensional nanostructures such as nanowires, nanotubes and graphene. We will demonstrate that phonons transport in low dimensional systems superdiffusively, which leads to a size dependent thermal conductivity. In other words, Fourier’s law is not applicable in low dimensional structures.

Keywords

Colloquium 

References

  1. 1.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    G. Zhang, B. Li, Nanoscale 2, 1058 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    E. Pop, Nano Research 3, 147 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Dhar, Adv. Phys. 57, 457 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Yang, G. Chen, M. Laroche, Y. Taur, J. Heat Transfer. 127, 298 (2005)CrossRefGoogle Scholar
  7. 7.
    C.W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Phys. Rev. Lett. 101, 075903 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Rieder, J.L. Lebowitz, E. Lieb, J. Math. Phys. 8, 1073 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    H. Nakazawa, Prog. Theor. Phys. Suppl. 39, 236 (1968)Google Scholar
  10. 10.
    S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    S. Lepri, R. Livi, A. Politi, Europhys. Lett. 43, 271 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    T. Hatano, Phys. Rev. E 59, R1 (1999)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Dhar, Phys. Rev. Lett. 86, 3554 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    P. Grassberger, W. Nadler, L. Yang, Phys. Rev. Lett. 89, 180601 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    G. Zhang, B. Li, J. Chem. Phys. 123, 014705 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010)CrossRefGoogle Scholar
  17. 17.
    P. Kim, L. Shi, A. Majumdar, P.L. Mceuen, Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Nat. Nanotechnol. 5, 251 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    C.T. Bui, R. Xie, M. Zheng, Q. Zhang, C.H. Sow, B. Li, J.T.L. Thong, Small 8, 738 (2012)CrossRefGoogle Scholar
  24. 24.
    A.L. Moore, M.T. Pettes, F. Zhou, L. Shi, J. Appl. Phys. 106, 034310 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. Chen, G. Zhang, B. Li, J. Chem. Phys. 135, 104508 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.H. Kim, J. Xiang, R. Chen, Nano Lett. 11, 5507 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, J. Heat Transfer. 125, 881 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Henry, G. Chen, Phys. Rev. Lett. 101, 235502 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    X. Huang, G. Liu, X. Wang, Adv. Mater. 24, 1482 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Nat. Mater. 9, 555 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J.H. Seol et al., Science 328, 213 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Nano Lett. 10, 1645 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    S. Chen et al., ACS Nano 5, 321 (2010)CrossRefGoogle Scholar
  37. 37.
    J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Phys. Rev. B 83, 081419 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, A.K. Geim, ACS Nano 4, 1889 (2010)CrossRefGoogle Scholar
  39. 39.
    A.A. Balandin, Nat. Mater. 10, 569 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Wang, R. Xie, C.T. Bui, D. Liu, X. Ni, B. Li, J.T.L. Thong, Nano Lett. 11, 113 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    X. Xu et al. (2010), arXiv:1012.2937Google Scholar
  42. 42.
    N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    L. Lindsay, D.A. Broido, N. Mingo, Phys. Rev. B 82, 115427 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    X. Xu et al. (2012), unpublishedGoogle Scholar
  45. 45.
    M.T. Pettes, I. Jo, Z. Yao, L. Shi, Nano Lett. 11, 1195 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    D.L. Nika, S. Ghosh, E.P. Pokatilov, A.A. Balandin, Appl. Phys. Lett. 94, 203103 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    L. Yang, P. Grassberger, B. Hu, Phys. Rev. E 74, 062101 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    S. Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    J. Yang, S. Waltermire, Y. Chen, A.A. Zinn, T.T. Xu, D. Li, Appl. Phys. Lett. 96, 023109 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    T. Yamamoto, S. Watanabe, K. Watanabe, Phys. Rev. Lett. 92, 075502 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    G. Zhang, B. Li, J. Chem. Phys. 123, 114714 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    S. Maruyama, Physica B 323, 193 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    B. Li, J. Wang, Phys. Rev. Lett. 91, 044301 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    G.J. Zhang, G. Zhang, H.J. Chua, R.E. Chee, E.H. Wong, A. Agarwal, K.D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian, Nano Lett. 8, 1066 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Nature 441, 489 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    G. Zhang, Q. Zhang, C.T. Bui, G.Q. Lo, B. Li, Appl. Phys. Lett. 94, 213108 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    G. Zhang, Q. Zhang, D. Kavitha, G.Q. Lo, Appl. Phys. Lett. 95, 243104 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    D. Donadio, G. Galli, Nano Lett. 10, 847 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    T. Markussen, A.P. Jauho, M. Brandbyge, Phys. Rev. Lett. 103, 055502 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    F. Sansoz, Nano Lett. 11, 5378 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    L. Shi, D. Yao, G. Zhang, B. Li, Appl. Phys. Lett. 95, 063102 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    D. Yao, G. Zhang, G.Q. Lo, B. Li, Appl. Phys. Lett. 94, 113113 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Y. Chen, D. Li, J.R. Lukes, A. Majumdar, J. Heat Transfer. 127, 1129 (2005)CrossRefGoogle Scholar
  68. 68.
    J. Chen, G. Zhang, B. Li, J. Chem. Phys. 135, 204705 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    R. Yang, G. Chen, M.S. Dresselhaus, Nano Lett. 5, 1111 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    J. Chen, G. Zhang, B. Li, Nano Lett. 10, 3978 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Nano Lett. 11, 618 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    J. Chen, G. Zhang, B. Li, Nano Lett. 12, 2826 (2012)CrossRefGoogle Scholar
  73. 73.
    N. Yang, G. Zhang, B. Li, Nano Lett. 8, 276 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    J. Chen, G. Zhang, B. Li, Appl. Phys. Lett. 95, 073117 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    L. Shi, D. Yao, G. Zhang, B. Li, Appl. Phys. Lett. 96, 173108 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    J. Chen, G. Zhang, B. Li, J. Phys. Soc. Jpn 79, 074604 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    S. Denisov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 91, 194301 (2003)ADSCrossRefGoogle Scholar
  78. 78.
    Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    C. Berger et al., Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    X. Wang, H. Dai, Nature Chem. 2, 661 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    Y. Xu, X. Chen, B.L. Gu, W. Duan, Appl. Phys. Lett. 95, 233116 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    Y. Xu, X. Chen, J. Wang, B.L. Gu, W. Duan, Phys. Rev. B 81, 195425 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    W.J. Evans, L. Hu, P. Keblinski, Appl. Phys. Lett. 96, 203112 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    X. Ni, G. Zhang, B. Li, J. Phys.: Condens. Matter 23, 215301 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    S.K. Chien, Y.T. Yang, C.K. Chen, Appl. Phys. Lett. 98, 033107 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    Q.X. Pei, Z.D. Sha, Y.W. Zhang, Carbon 49, 4752 (2011)CrossRefGoogle Scholar
  87. 87.
    J. Hu, S. Schiffli, A. Vallabhaneni, X. Ruan, Y.P. Chen, Appl. Phys. Lett. 97, 133107 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    T. Ouyang, Y.P. Chen, K.K. Yang, J.X. Zhong, Europhys. Lett. 88, 28002 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    J.W. Jiang, B.S. Wang, J.S. Wang, Appl. Phys. Lett. 98, 113114 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    Z.X. Xie, K.Q. Chen, W. Duan, J. Phys.: Condens. Matter 23, 315302 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    X. Ni, G. Liang, J.S. Wang, B. Li, Appl. Phys. Lett. 95, 192114 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    X. Zhai, G. Jin, Europhys. Lett. 96, 16002 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    N. Wei, L. Xu, H.Q. Wang, J.C. Zheng, Nat. Nanotechnol. 22, 105705 (2011)ADSGoogle Scholar
  95. 95.
    Z.X. Guo, D. Zhang, X.G. Gong, Phys. Rev. B 84, 075470 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    Z.Y. Ong, E. Pop, Phys. Rev. B 84, 075471 (2011)ADSCrossRefGoogle Scholar
  97. 97.
    Z.X. Guo, J.W. Ding, X.G. Gong, Phys. Rev. B 85, 235429 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    G. Zhang, H. Zhang, Nanoscale 3, 4604 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    N. Yang, X. Ni, J.W. Jiang, B. Li, Appl. Phys. Lett. 100, 093107 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    W.R. Zhong, M.P. Zhang, B.Q. Ai, D.Q. Zheng, Appl. Phys. Lett. 98, 113107 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    H. Cao, Z. Guo, H. Xiang, X. Gong, Phys. Lett. A 376, 525 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 93, 243111 (2008)ADSCrossRefGoogle Scholar
  103. 103.
    N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 95, 033107 (2009)ADSCrossRefGoogle Scholar
  104. 104.
    J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    H. Tian, D. Xie, Y. Yang, T.L. Ren, G. Zhang, Y.F. Wang, C.J. Zhou, P.G. Peng, L.G. Wang, L.T. Liu, NPG Sci. Rep. 2, 523 (2012)Google Scholar
  106. 106.
    W.R. Zhong, W.H. Huang, X.R. Deng, B.Q. Ai, Appl. Phys. Lett. 99, 193104 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    T. Ouyang, Y. Chen, Y. Xie, G.M. Stocks, J. Zhong, Appl. Phys. Lett. 99, 233101 (2011)ADSCrossRefGoogle Scholar
  108. 108.
    Z. Guo, D. Zhang, X.G. Gong, Appl. Phys. Lett. 95, 163103 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    A. Eletskii, I. Inskandarova, A. Knizhnik, D. Krasikov, Molecular Dynamic Simulation of the Thermal Conductivity of Graphene and Graphene Oxide, in Graphene 2012 International Conference (Brussels, 2012)Google Scholar
  110. 110.
    K.R. Allen, J. Ford, Phys. Rev. 176, 1046 (1968)ADSCrossRefGoogle Scholar
  111. 111.
    H. Matsuda, K. Ishii, Prog. Theor. Phys. Suppl. 45, 56 (1970)ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    A. Casher, J.L. Lebowitz, J. Math. Phys. 12, 1701 (1971)ADSCrossRefGoogle Scholar
  113. 113.
    R.J. Rubin, W.L. Greer, J. Math. Phys. 12, 1686 (1971)ADSCrossRefGoogle Scholar
  114. 114.
    T. Verheggen, Commun. Math. Phys. 68, 69 (1979)ADSMATHMathSciNetCrossRefGoogle Scholar
  115. 115.
    A. Dhar, Phys. Rev. Lett. 86, 5882 (2001)ADSCrossRefGoogle Scholar
  116. 116.
    D. Roy, A. Dhar, Phys. Rev. E 78, 051112 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    A. Dhar, J.L. Lebowitz, Phys. Rev. Lett. 100, 134301 (2008)ADSCrossRefGoogle Scholar
  118. 118.
    S. John, H. Sompolinsky, M.J. Stephen, Phys. Rev. B 27, 5592 (1983)ADSCrossRefGoogle Scholar
  119. 119.
    L.W. Lee, A. Dhar, Phys. Rev. Lett. 95, 094302 (2005)ADSCrossRefGoogle Scholar
  120. 120.
    L. Yang, Phys. Rev. Lett. 88, 094301 (2002)ADSCrossRefGoogle Scholar
  121. 121.
    S. Lepri, Phys. Rev. E 58, 7165 (1998)ADSCrossRefGoogle Scholar
  122. 122.
    A. Pereverzev, Phys. Rev. E 68, 056124 (2003)ADSMathSciNetCrossRefGoogle Scholar
  123. 123.
    M.S. Green, J. Chem. Phys. 22, 398 (1954)ADSMathSciNetCrossRefGoogle Scholar
  124. 124.
    R. Kubo, M. Yokota, S. Nakajima, J. Phys. Soc. Jpn 12, 1203 (1957)ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    L. Delfini, S. Lepri, R. Livi, A. Politi, J. Stat. Mech. 2007, P02007 (2007)CrossRefGoogle Scholar
  126. 126.
    J.S. Wang, B. Li, Phys. Rev. Lett. 92, 074302 (2004)ADSCrossRefGoogle Scholar
  127. 127.
    J.S. Wang, B. Li, Phys. Rev. E 70, 021204 (2004)ADSCrossRefGoogle Scholar
  128. 128.
    T. Mai, O. Narayan, Phys. Rev. E 73, 061202 (2006)ADSCrossRefGoogle Scholar
  129. 129.
    P.I. Hurtado, Phys. Rev. Lett. 96, 010601 (2006)ADSCrossRefGoogle Scholar
  130. 130.
    J. Lukkarinen, H. Spohn, Commum. Pure Appl. Math. 61, 1753 (2008)MATHMathSciNetCrossRefGoogle Scholar
  131. 131.
    K. Aoki, J. Lukkarinen, H. Spohn, J. Stat. Phys. 124, 1105 (2006)ADSMATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    H. Kaburaki, M. Machida, Phys. Lett. A 181, 85 (1993)ADSCrossRefGoogle Scholar
  133. 133.
    T. Mai, A. Dhar, O. Narayan, Phys. Rev. Lett. 98, 184301 (2007)ADSCrossRefGoogle Scholar
  134. 134.
    L. Wang, T. Wang, Europhys. Lett. 93, 54002 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    D. Xiong, J. Wang, Y. Zhang, H. Zhao, Phys. Rev. E 85, 020102 (2012)ADSCrossRefGoogle Scholar
  136. 136.
    F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997)ADSCrossRefGoogle Scholar
  137. 137.
    B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)ADSCrossRefGoogle Scholar
  138. 138.
    K. Aoki, D. Kusnezov, Phys. Lett. A 265, 250 (2000)ADSMATHMathSciNetCrossRefGoogle Scholar
  139. 139.
    B. Hu, B. Li, H. Zhao, Phys. Rev. E 61, 3828 (2000)ADSCrossRefGoogle Scholar
  140. 140.
    D.N. Payton, W.M. Visscher, Phys. Rev. 156, 1032 (1967)ADSCrossRefGoogle Scholar
  141. 141.
    B. Li, H. Zhao, B. Hu, Phys. Rev. Lett. 86, 63 (2001)ADSCrossRefGoogle Scholar
  142. 142.
    A. Dhar, K. Saito, Phys. Rev. E 78, 061136 (2008)ADSCrossRefGoogle Scholar
  143. 143.
    A. Lippi, R. Livi, J. Stat. Phys. 100, 1147 (2000)MATHCrossRefGoogle Scholar
  144. 144.
    P. Grassberger, L. Yang (2002), arXiv:cond-mat/0204247v1Google Scholar
  145. 145.
    H. Shiba, N. Ito, J. Phys. Soc. Jpn 77, 054006 (2008)ADSCrossRefGoogle Scholar
  146. 146.
    D. Alonso, R. Artuso, G. Casati, I. Guarneri, Phys. Rev. Lett. 82, 1859 (1999)ADSCrossRefGoogle Scholar
  147. 147.
    B. Li, L. Wang, B. Hu, Phys. Rev. Lett. 88, 223901 (2002)ADSCrossRefGoogle Scholar
  148. 148.
    D. Alonso, A. Ruiz, I. de Vega, Phys. Rev. E 66, 066131 (2002)ADSMathSciNetCrossRefGoogle Scholar
  149. 149.
    B. Li, G. Casati, J. Wang, Phys. Rev. E 67, 021204 (2003)ADSCrossRefGoogle Scholar
  150. 150.
    A. Blumen, G. Zumofen, J. Klafter, Phys. Rev. A 40, 3964 (1989)ADSCrossRefGoogle Scholar
  151. 151.
    A. Dhar, D. Dhar, Phys. Rev. Lett. 82, 480 (1999)ADSCrossRefGoogle Scholar
  152. 152.
    P. Cipriani, S. Denisov, A. Politi, Phys. Rev. Lett. 94, 244301 (2005)ADSCrossRefGoogle Scholar
  153. 153.
    J. Klafter, G. Zumofen, Physica A 196, 102 (1993)ADSCrossRefGoogle Scholar
  154. 154.
    H. Zhao, Phys. Rev. Lett. 96, 140602 (2006)ADSCrossRefGoogle Scholar
  155. 155.
    V. Zaburdaev, S. Denisov, P. Hänggi, Phys. Rev. Lett. 106, 180601 (2011)ADSCrossRefGoogle Scholar
  156. 156.
    S. Liu, N. Li, J. Ren, B. Li (2012), arXiv:1103.2835Google Scholar
  157. 157.
    A. Henry, G. Chen, Phys. Rev. B 79, 144305 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Centre for Computational Science and Engineering, Graphene Research Centre, Department of PhysicsNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingP.R. China
  4. 4.NUS-Tongji Center for Phononics and Thermal Energy Science and Department of PhysicsTongji UniversityShanghaiP.R. China

Personalised recommendations