Skip to main content

Advertisement

Log in

Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always “remember” the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker’s memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Radons, R. Klages, I.M. Sokolov, Anomalous Transport: Foundations and Applications (Wiley-VCH, Germany, 2008)

  2. D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

  3. R. Metzler, J. Klafter, J. Phys. A 37, R161 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II (Springer-Verlag, Berlin, 1998)

  5. H. Mori, Prog. Theor. Phys. 34, 399 (1965)

    Article  ADS  Google Scholar 

  6. G.H. Weiss, Aspects and Applications of the Random Walk (Amsterdam, North-Holland, 1994)

  7. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82, 3563 (1999)

    Article  ADS  Google Scholar 

  9. E. Barkai, Phys. Rev. E 63, 046118 (2001)

    Article  ADS  Google Scholar 

  10. B. O’Shaughnessy, I. Procaccia, Phys. Rev. Lett. 54, 455 (1985)

    Article  ADS  Google Scholar 

  11. G.M. Schütz, S. Trimper, Phys. Rev. E 70, 045101 (2004)

    Article  ADS  Google Scholar 

  12. J.C. Cressoni, M.A.A. da Silva, G.M. Viswanathan, Phys. Rev. Lett. 98, 070603 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.A.A. da Silva, G.M. Viswanathan, A.S. Ferreira, J.C. Cressoni, Phys. Rev. E 77, 040101 (2008)

    Article  Google Scholar 

  14. G.M. Viswanathan, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, The Physics of Foraging (Cambridge University Press, Cambridge, 2011)

  15. D. Boyer, Europhys. Lett. 83, 20001 (2008)

    Article  ADS  Google Scholar 

  16. Xiao-Yan Sun, Rui Jiang, Qing-Yi Hao, Bing-Hong Wang, Europhys. Lett. 92, 18003 (2010)

    Article  ADS  Google Scholar 

  17. N. Kumar, U. Hrbola, K. Linderberg, Phys. Rev. E 82, 021101 (2010)

    Article  ADS  Google Scholar 

  18. L. Turban, J. Phys. A: Math. Theor. 43, 285006 (2010)

    Article  MathSciNet  Google Scholar 

  19. J. Militão Berbert, A.S. Martinez, Phys. Rev. E 81, 061127 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. R.J. Harris, H. Touchette, J. Phys. A: Math. Theor. 42, 342001 (2009)

    Article  MathSciNet  Google Scholar 

  21. C.A. Sangaletti Terçariol, A.S. Martinez, Phys. Rev. E 78, 031111 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, G.M., Ferreira, A.S., da Silva, M.A.A. et al. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile. Eur. Phys. J. B 85, 310 (2012). https://doi.org/10.1140/epjb/e2012-30378-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30378-5

Keywords

Navigation