Skip to main content
Log in

Defining the effective temperature of a quantum driven system from current-current correlation functions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate current-current correlation functions and find an expression for the zero-frequency noise of multiterminal systems driven by harmonically time-dependent voltages within the Keldysh non-equilibrium Green’s functions formalism. We also propose a fluctuation-dissipation relation for current-current correlation functions to define an effective temperature. We discuss the behavior of this temperature and compare it with the local temperature determined by a thermometer and with the effective temperature defined from a single-particle fluctuation-dissipation relation. We show that for low frequencies all the definitions of the temperature coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Cugliandolo, J. Kurchan, Phys. Rev. Lett. 71, 173 (1993)

    Article  ADS  Google Scholar 

  2. L.F. Cugliandolo, J. Kurchan, Philos. Mag. B 71, 501 (1995)

    Article  Google Scholar 

  3. L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55, 3898 (1997)

    Article  ADS  Google Scholar 

  4. L.F. Cugliandolo, J. Kurchan, Physica A 263, 242 (1999)

    Article  ADS  Google Scholar 

  5. H. Makse, J. Kurchan, Nature 415, 614 (2002)

    Article  ADS  Google Scholar 

  6. A.B. Kolton, R. Exartier, L.F. Cugliandolo, D. Dominguez, N. Gronbech-Jensen, Phys. Rev. Lett. 89, 227001 (2002)

    Article  ADS  Google Scholar 

  7. F. Zamponi, G. Ruocco, L. Angelani, Phys. Rev. E 71, R020101 (2005)

    Article  ADS  Google Scholar 

  8. L. Berthier, J.-L. Barrat, Phys. Rev. Lett. 89, 95702 (2002)

    Article  ADS  Google Scholar 

  9. D. Segal, D.R. Reichman, A.J. Millis, Phys. Rev. B 76, 195316 (2007)

    Article  ADS  Google Scholar 

  10. R.A. Duine, Phys. Rev. B 77, 014409 (2008)

    Article  ADS  Google Scholar 

  11. C. Aron, G. Biroli, L.F. Cugliandolo, Phys. Rev. Lett. 102, 050404 (2009)

    Article  ADS  Google Scholar 

  12. L.F. Cugliandolo, G.S. Lozano, Phys. Rev. Lett. 80, 4979 (1998)

    Article  ADS  Google Scholar 

  13. L.F. Cugliandolo, G.S. Lozano, Phys. Rev. B 59, 915 (1999)

    Article  ADS  Google Scholar 

  14. L. Arrachea, L.F. Cugliandolo, Europhys. Lett. 70, 642 (2005)

    Article  ADS  Google Scholar 

  15. L. Foini, L. Cugliandolo, A. Gambassi, Phys. Rev. B 84, 212404 (2011)

    Article  ADS  Google Scholar 

  16. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  17. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003) and Refs. therein

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Büttiker, Phys. Rev. B 40, 3409 (1989)

    Article  ADS  Google Scholar 

  19. T. Gramespacher, M. Büttiker, Phys. Rev. B 56, 13026 (1997)

    Article  ADS  Google Scholar 

  20. H. Aita, L. Arrachea, C. Naón, J. Phys: Condens. Matter 23, 475601 (2011)

    Article  ADS  Google Scholar 

  21. H. Pothier, S. Guéron, N.O. Birge, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 79, 3490 (1997)

    Article  ADS  Google Scholar 

  22. C. Altimiras, H. Le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Nat. Phys. 6, 34 (2010)

    Article  Google Scholar 

  23. H. Le Sueur, C. Altimiras, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Phys. Rev. Lett. 105, 056803 (2010)

    Article  ADS  Google Scholar 

  24. G. Granger, J.P. Eisenstein, J.L. Reno, Phys. Rev. Lett. 102, 086803 (2009)

    Article  ADS  Google Scholar 

  25. L. Arrachea, E. Fradkin, Phys. Rev. B 84, 235436 (2011)

    Article  ADS  Google Scholar 

  26. K. Saito, G. Benenti, G. Casati, T. Prosen, Phys. Rev. B 84, R201306 (2011)

    Article  ADS  Google Scholar 

  27. D. Sánchez, L. Serra, Phys. Rev. B 84, 201307 (2011)

    Article  ADS  Google Scholar 

  28. A. Glatz, N.M. Chtchelkatchev, I.S. Beloborodov, V. Vinokur, Phys. Rev. B 84, 235101 (2011)

    Article  ADS  Google Scholar 

  29. N. Chtchelkatchev, V. Vinokur, Europhys. Lett. 88, 47001 (2009)

    Article  ADS  Google Scholar 

  30. A. Petković, N.M. Chtchelkatchev, T.I. Baturina, V. Vinokur, Phys. Rev. Lett. 105, 187003 (2010)

    Article  ADS  Google Scholar 

  31. Y. Dubi, M. Di Ventra, Phys. Rev. B 80, 214510 (2009)

    Article  ADS  Google Scholar 

  32. M. Galperin, K. Saito, A.V. Balatsky, A. Nitzan, Phys. Rev. B 80, 115427 (2009)

    Article  ADS  Google Scholar 

  33. Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  34. A. Caso, L. Arrachea, G.S. Lozano, Phys. Rev. B 81, R041301 (2010)

    Article  ADS  Google Scholar 

  35. L.J. Geerligs, V.F. Anderegg, P.A.M. Holweg, J.E. Mooij, H. Pothier, D. Esteve, C. Urbina, M.H. Devoret, Phys. Rev. Lett. 64, 2691 (1990)

    Article  ADS  Google Scholar 

  36. M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 293, 1905 (1999)

    Article  ADS  Google Scholar 

  37. S.K. Watson, R.M. Potok, C.M. Marcus, V. Umansky, Phys. Rev. Lett. 91, 258301 (2003)

    Article  ADS  Google Scholar 

  38. M.D. Blumenthal, B. Kaestner, L. Li, S. Giblin, T.J.B.M. Hanssen, M. Pepper, D. Anderson, G. Jones, D.A. Ritchie, Nat. Phys. 3, 343 (2007)

    Article  Google Scholar 

  39. J. Gabelli, G. Fève, J.-M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y. Jin, D.C. Glattli, Science 313, 499 (2006)

    Article  ADS  Google Scholar 

  40. G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Placais, D.C. Glattli, A. Cavanna, B. Etienne, Y. Jin, Science 316, 1169 (2007)

    Article  ADS  Google Scholar 

  41. H.L. Engquist, P.W. Anderson, Phys. Rev. B 24, 1151 (1981)

    Article  ADS  Google Scholar 

  42. A. Caso, L. Arrachea, G.S. Lozano, Phys. Rev. B 83, 165419 (2011)

    Article  ADS  Google Scholar 

  43. P. Samuelsson, M. Büttiker, Phys. Rev. B 73, R041305 (2006)

    Article  ADS  Google Scholar 

  44. A. Andreev, A. Kamenev, Phys. Rev. Lett. 85, 1294 (2000)

    Article  ADS  Google Scholar 

  45. M. Moskalets, M. Büttiker, Phys. Rev. B 66, 035306 (2002)

    Article  ADS  Google Scholar 

  46. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990)

    Article  ADS  Google Scholar 

  47. M. Büttiker, Phys. Rev. B 46, 12485 (1992)

    Article  ADS  Google Scholar 

  48. Ya.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  49. Th. Martin, in Nanophysics: Coherence and Transport, les Houches Session LXXXI, edited by H. Bouchiat et al. (Elsevier, 2005), pp. 283–359

  50. M. Moskalets, M. Büttiker, Phys. Rev. B 70, 245305 (2004)

    Article  ADS  Google Scholar 

  51. S. Camalet, S. Kohler, P. Hänggi, Phys. Rev. B 70, 155326 (2004)

    Article  ADS  Google Scholar 

  52. S. Camalet, J. Lehmann, S. Kohler, P. Hänggi, Phys. Rev. Lett. 90, 210602 (2003)

    Article  ADS  Google Scholar 

  53. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  54. L. Arrachea, Phys. Rev. B 72, 125349 (2005)

    Article  ADS  Google Scholar 

  55. L. Arrachea, Phys. Rev. B 75, 035319 (2007)

    Article  ADS  Google Scholar 

  56. L. Arrachea, M. Moskalets, Phys. Rev. B 74, 245322 (2006)

    Article  ADS  Google Scholar 

  57. A. Caso, L. Arrachea, G.S. Lozano, Physica B 407, 3172 (2012)

    Article  ADS  Google Scholar 

  58. F. Foieri, L. Arrachea, M.J. Sanchez, Phys. Rev. B 79, 085430 (2009)

    Article  ADS  Google Scholar 

  59. F. Foieri, L. Arrachea, Phys. Rev. B 82, 125434 (2010)

    Article  ADS  Google Scholar 

  60. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2008), pp. 63–74.

  61. L. Arrachea, M. Moskalets, L. Martin-Moreno, Phys. Rev. B 75, 245420 (2007)

    Article  ADS  Google Scholar 

  62. P.W. Brouwer, Phys. Rev. B 58, R10135 (1998)

    Article  ADS  Google Scholar 

  63. M. Moskalets, M. Büttiker, Phys. Rev. B 66, 035306 (2002)

    Article  ADS  Google Scholar 

  64. Y. Dubi, M. Di Ventra, Nano Lett. 9, 97 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Arrachea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caso, A., Arrachea, L. & Lozano, G.S. Defining the effective temperature of a quantum driven system from current-current correlation functions. Eur. Phys. J. B 85, 266 (2012). https://doi.org/10.1140/epjb/e2012-30303-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30303-0

Keywords

Navigation