Skip to main content
Log in

Robustness of correlated networks against propagating attacks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate robustness of correlated networks against propagating attacks modeled by a susceptible-infected-removed model. By Monte-Carlo simulations, we numerically determine the first critical infection rate, above which a global outbreak of disease occurs, and the second critical infection rate, above which disease disintegrates the network. Our result shows that correlated networks are robust compared to the uncorrelated ones, regardless of whether they are assortative or disassortative, when a fraction of infected nodes in an initial state is not too large. For large initial fraction, disassortative network becomes fragile while assortative network holds robustness. This behavior is related to the layered network structure inevitably generated by a rewiring procedure we adopt to realize correlated networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  2. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  5. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008)

  6. M.E.J. Newman, Networks: An Introduction (Oxford Univeristy Press, 2008)

  7. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  8. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  9. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  10. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  11. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002)

    Article  ADS  Google Scholar 

  12. L.K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, S. Havlin, Phys. Rev. Lett. 94, 188701 (2005)

    Article  ADS  Google Scholar 

  13. J. Kephart, S. White, in Research in Security and Privacy, 1991, Proceedings, 1991 IEEE Computer Society Symposium on (IEEE, 1991), pp. 343–359

  14. J. Kephart, S. White, in Research in Security and Privacy, 1993, Proceedings, 1993 IEEE Computer Society Symposium on (IEEE, 1993), pp. 2–15

  15. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  16. M.E.J. Newman, Phys. Rev. Lett. 95, 108701 (2005)

    Article  ADS  Google Scholar 

  17. T. Hasegawa, N. Masuda, J. Stat. Mech., P09014 (2011)

  18. Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26, 521 (2002)

    ADS  Google Scholar 

  19. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  20. M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. L.D. Valdez, C. Buono, L.A. Braunstein, P.A. Macri, Europhys. Lett. 96, 38001 (2011)

    Article  ADS  Google Scholar 

  22. A.V. Goltsev, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 78, 051105 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Y. Shiraki, Y. Kabashima, Phys. Rev. E 82, 036101 (2010)

    Article  ADS  Google Scholar 

  24. T. Tanizawa, S. Havlin, H. Stanley, Phys. Rev. E 85, 046109 (2012)

    Article  ADS  Google Scholar 

  25. J. Menche, A. Valleriani, R. Lipowsky, Phys. Rev. E 83, 061129 (2011)

    Article  ADS  Google Scholar 

  26. M. Boguná, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003)

    Article  ADS  Google Scholar 

  27. M. Schläpfer, L. Buzna, Phys. Rev. E 85, 015101 (2012)

    Article  ADS  Google Scholar 

  28. A. Vázquez, Y. Moreno, Phys. Rev. E 67, 015101 (2003)

    Article  ADS  Google Scholar 

  29. R. Xulvi-Brunet, I.M. Sokolov, Phys. Rev. E 70, 066102 (2004)

    Article  ADS  Google Scholar 

  30. T. Nogawa, T. Hasegawa, J. Phys. A: Math. Theor. 42, 145001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Hasegawa, T. Nogawa, K. Nemoto, preprint arXiv:1009.6009 (2010)

  32. D.A. Kessler, N.M. Shnerb, Phys. Rev. E 76, 010901 (2007)

    Article  ADS  Google Scholar 

  33. E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 69, 050901 (2004)

    Article  ADS  Google Scholar 

  34. S. Janson, D.E. Knuth, T. Łuczak, B. Pittel, Random Struct. Algorithms 4, 233 (1993)

    Article  MATH  Google Scholar 

  35. N. Masuda, New J. Phys. 11, 123018 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, T., Konno, K. & Nemoto, K. Robustness of correlated networks against propagating attacks. Eur. Phys. J. B 85, 262 (2012). https://doi.org/10.1140/epjb/e2012-30290-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30290-0

Keywords

Navigation