Skip to main content
Log in

Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Previous experimental and theoretical studies suggest that first-spike latency is an efficient information carrier and may contain more amounts of neural information than those of other spikes. Therefore, the biophysical mechanisms underlying the first-spike response latency are of considerable interest. Here we present a systematical investigation on the response latency dynamics of a single Hodgkin-Huxley neuron subject to both a suprathreshold periodic forcing and background activity. In contrast to most earlier works, we consider a biophysically realistic noise model which allows us to relate the synaptic background activity to unreliable synapses and latency. Our results show that first-spike latency of a neuron can be regulated via unreliable synapses. An intermediate level of successful synaptic transmission probability significantly increases both the latency and its jitter, indicating that the unreliable synaptic transmission constrains the signal detection ability of neurons. Furthermore, we demonstrate that the destructive influence of synaptic unreliability can be controlled by the input regime and by the excitatory coupling strength. Better tuning of these two factors could help the H-H neuron encode information more accurately in terms of the first-spike latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Adrian, J. Physiol. 61, 49 (1926)

    Google Scholar 

  2. A.P. Georgepoulos, A.B. Schwartz, R.E. Keftner, Science 233, 1416 (1986)

    Article  ADS  Google Scholar 

  3. M. Abeles, Corticonics: Neural Circuitry of the Cerebral Cortex (Cambridge University Press, New York, 1991)

  4. M. Abeles, H. Bergman, E. Magalit, A. Vaadia, J. Neurophysiol. 70, 1629 (1993)

    Google Scholar 

  5. G. Buzsáki, Z. Horvath, R. Urioste, J. Hetke, K. Wise, Science 256, 1025 (1992)

    Article  ADS  Google Scholar 

  6. K.N. Dudkin, V.K. Kruchinin, I.V. Chueva., Neurosci. Behav. Physiol. 27, 303 (1997)

    Article  Google Scholar 

  7. P. Fries, J.H. Reynolds, A.E. Rorie, R. Desimone, Science 291, 1560 (2001)

    Article  ADS  Google Scholar 

  8. G. Buzsáki, Rhytms of the Brain (Oxford University Press, New York, 2006)

  9. T. Womelsdorf, P. Fries, Curr. Opin. Neurobiol. 17, 154 (2007)

    Article  Google Scholar 

  10. U. Rutishauser, I.B. Ross, A.N. Mamelak, E.M. Schuman, Nature 464, 903 (2010)

    Article  ADS  Google Scholar 

  11. S.J. Thorpe, D. Fize, C. Marlot, Nature 381, 520 (1996)

    Article  ADS  Google Scholar 

  12. N. Masuda, K. Aihara, Neural Comput. 15, 103 (2003)

    Article  MATH  Google Scholar 

  13. Y. Hirata, Y. Katori, H. Shimokawa, H. Suzuki, T.A. Blenkinsop, E.J. Lang, K. Aihara, J. Neurosci. Methods 172, 312 (2008)

    Article  Google Scholar 

  14. S.J. Thorpe, in Parallel Processing in Neural Systems and Computers, edited by R. Eckmiller, G. Hartman, G. Hauske (Elsevier, Amsterdam, 1990), pp. 91–94

  15. R. VanRullen, R. Guyonneau, S.J. Thorpe, Trends Neurosci. 28, 1 (2005)

    Article  Google Scholar 

  16. S. Panzeri, R.S. Petersen, S.R. Schultz, M. Lebedev, M.E. Diamond, Neuron 29, 769 (2001)

    Article  Google Scholar 

  17. R.S. Petersen, S. Panzeri, M.E. Diamond, Biosystems 67, 187 (2002)

    Article  Google Scholar 

  18. S. Junek, E. Kludt, F. Wolf, D. Schild, Neuron 67, 872 (2010)

    Article  Google Scholar 

  19. S. Furukawa, J.C. Middlebrooks, J. Neurophysiol. 87, 1749 (2002)

    Google Scholar 

  20. P. Heil, Curr. Opin. Neurobiol. 14, 461 (2004)

    Article  Google Scholar 

  21. T.J. Gawne, T.W. Kjaer, B.J. Richmond, J. Neurophysiol. 76, 1356 (1996)

    Google Scholar 

  22. D.S. Reich, F. Mechler, J.D. Victor, J. Neurophysiol. 5, 1039 (2001)

    Google Scholar 

  23. E.V. Pankratova, A.V. Polovinkin, B. Spagnolo, Phys. Lett. A 344, 43 (2005)

    Article  ADS  MATH  Google Scholar 

  24. E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005)

    Article  ADS  Google Scholar 

  25. H.C. Tuckwell, F.Y.M. Wan, Physica A 351, 427 (2005)

    Article  ADS  Google Scholar 

  26. M. Ozer, L.J. Graham, Eur. Phys. J. B 61, 499 (2008)

    Article  ADS  MATH  Google Scholar 

  27. M. Ozer, M. Uzuntarla, Phys. Lett. A 372, 4603 (2008)

    Article  ADS  MATH  Google Scholar 

  28. M. Ozer, M. Uzuntarla, M. Perc, L.J. Graham, J. Theoretical Biol. 261, 83 (2009)

    Article  Google Scholar 

  29. Z. Pawlas, L.B. Klebanov, V. Benes, M. Prokesova, J. Popelar, P. Lansky, Neural Comput. 22, 1675 (2010)

    Article  MATH  Google Scholar 

  30. G. Wainrib, M. Thieullen, K. Pakdaman, Biol. Cybern. 103, 43 (2010)

    Article  MathSciNet  Google Scholar 

  31. M. Raastad, J.F. Storm, P. Andersen, Eur. J. Neurosci. 4, 113 (1992)

    Google Scholar 

  32. C. Allen, C.F. Stevens, Proc. Natl. Acad. Sci. USA 91, 10380 (1994)

    Article  ADS  Google Scholar 

  33. B. Katz, Nerve, Muscle and Synapse (McGrawHill, New York, 1996)

  34. T. Branco, K. Staras, Nature Rev. Neurosci. 10, 373 (2009)

    Article  Google Scholar 

  35. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Google Scholar 

  36. V. Braitenberg, A. Schuz, Anatomy of the Cortex: Statistics and Geometry (Springer-Verlag, Berlin, 1991)

  37. N. Brunel, J. Comput. Neurosci. 8, 183 (2000)

    Article  MATH  Google Scholar 

  38. W. Kinzel, J. Comput. Neurosci. 24, 105 (2007)

    Article  MathSciNet  Google Scholar 

  39. A. Torcini, S. Luccioli, T. Kreuz, Neurocomputing 70, 1943 (2007)

    Article  Google Scholar 

  40. J. Friedrich, W. Kinzel, J. Comput. Neurosci. 27, 65 (2009)

    Article  MathSciNet  Google Scholar 

  41. D.Q. Guo, C.G. Li, J. Theoretical Biol. 308, 105 (2012)

    Article  Google Scholar 

  42. C.G. Li, Q.X. Zheng, Phys. Biol. 7, 036010 (2010)

    Article  ADS  Google Scholar 

  43. D.Q. Guo, C.G. Li, J. Comput. Neurosci. 30, 567 (2011)

    Article  MathSciNet  Google Scholar 

  44. D.Q. Guo, C.G. Li, Cogn. Neurodyn. 6, 75 (2012)

    Article  Google Scholar 

  45. A. Destexhe, M. Rudolph, J.M. Fellous, T.J. Sejnowski, Neuroscience 107, 13 (2001)

    Article  Google Scholar 

  46. S. Luccioli, T. Kreuz, A. Torcini, Phys. Rev. E 73, 041902 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Ozer, L.J. Graham, O. Erkaymaz, M. Uzuntarla, Neuroreport 18, 1371 (2007)

    Article  Google Scholar 

  48. N. Brunel, V. Hakim, Neural Comput. 11, 1621 (1999)

    Article  Google Scholar 

  49. W.B. Levy, R.A. Baxter, J. Neurosci. 22, 4746 (2002)

    Google Scholar 

  50. D.W. Sullivan, W.B. Levy, Neurocomputing 52, 397 (2003)

    Article  Google Scholar 

  51. M.S. Goldman, Neural Comput. 16, 1137 (2004)

    Article  MATH  Google Scholar 

  52. J. Kestler, W. Kinzel, J. Phys. A: Math. Gen. 39, 461 (2006)

    Article  ADS  Google Scholar 

  53. P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)

    Article  Google Scholar 

  54. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  55. M. Perc, Eur. J. Phys. 27, 451 (2006)

    Article  Google Scholar 

  56. T. Kreuz, S. Luccioli, A. Torcini, Phys. Rev. Lett. 97, 238101 (2006)

    Article  ADS  Google Scholar 

  57. X. Sun, M. Perc, Q. Lu, J. Kurths, Chaos 20, 033116 (2010)

    Article  ADS  Google Scholar 

  58. S. Song, K. Miller, L.F. Abbott, Nat. Neurosci. 3, 919 (2000)

    Article  Google Scholar 

  59. M. Tsodyks, K. Pawelzik, H. Markram, Neural Comput. 10, 821 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uzuntarla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzuntarla, M., Ozer, M. & Guo, D.Q. Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission. Eur. Phys. J. B 85, 282 (2012). https://doi.org/10.1140/epjb/e2012-30282-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30282-0

Keywords

Navigation