Advertisement

Electronic and transport properties of a biased multilayer hexagonal boron nitride

  • K. TangEmail author
  • Z. Y. Ni
  • Q. H. Liu
  • R. G. Quhe
  • Q. Y. Zheng
  • J. X. Zheng
  • R. X. Fei
  • Z. X. Gao
  • J. LuEmail author
Regular Article

Abstract

We explore the electronic and transport properties out of a biased multilayer hexagonal boron nitride (h-BN) by first-principles calculations. The band gaps of multilayer h-BN decrease almost linearly with increasing perpendicular electric field, irrespective of the layer number N and stacking manner. The critical electric filed (E 0) required to close the band gap decreases with the increasing N and can be approximated by E 0 = 3.2 / (N − 1) (eV). We provide a quantum transport simulation of a dual-gated 4-layer h-BN with graphene electrodes. The transmission gap in this device can be effectively reduced by double gates, and a high on-off ratio of 3000 is obtained with relatively low voltage. This renders biased MLh-BN a promising channel in field effect transistor fabrication.

Keywords

Solid State and Materials 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10, 3209 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Abdellaoui, A. Bath, B. Bouchikhi, O. Baehr, Mater. Sci. Eng. B 47, 257 (1997)CrossRefGoogle Scholar
  5. 5.
    Z.L. Yang, J. Ni, J. Appl. Phys. 107, 104301 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D. Pacile, J.C. Meyer, C.O. Girit, A. Zettl, Appl. Phys. Lett. 92, 133107 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Ribeiro, N.M.R. Peres, Phys. Rev. B 83, 235312 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V.L. Solozhenko, A.G. Lazarenko, J.P. Petitet, A.V. Kanaev, J. Phys. Chem. Solids 62, 1331 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Ramasubramaniam, D. Naveh, E. Towe, Nano Lett. 11, 1070 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Quhe, J.X. Zheng, G.F. Luo, Q. Liu, R. Qin, J. Zhou, D.P. Yu, S. Nagase, W.N. Mei, Z.X. Gao, J. Lu, NPG Asia Materials 4, e6 (2012), DOI: 10.1038/am.2012.10CrossRefGoogle Scholar
  14. 14.
    K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, J. Lu, J. Phys. Chem. C 115, 9458 (2011)CrossRefGoogle Scholar
  15. 15.
    A.A. Avetisyan, B. Partoens, F.M. Peeters, Phys. Rev. B 81, 115432 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Oostinga, H.B. Heersche, X.L. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7, 151 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B. Delley, J. Chem. Phys. 92, 508 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Jungthawan S. Limpijumnong, J.-L. Kuo, Phys. Rev. B 84, 235424 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M.O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Phys. Rev. Lett. 77, 2846 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    ATOMISTIX Toolkit, version 11.2. Quantum Wise A/S: Copenhagen, DenmarkGoogle Scholar
  23. 23.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    S. Dattan Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995)Google Scholar
  27. 27.
    M. Otani, S. Okada, Phys. Rev. B 83, 073405 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J. Slawinska, I. Zasada, Z. Klusek, Phys. Rev. B 81, 155433 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    E.K. Yu, D.A. Stewart, S. Tiwari, Phys. Rev. B 77, 195406 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacqu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Nat. Mater. 10, 282 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 10, 5049 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Tang
    • 1
    Email author
  • Z. Y. Ni
    • 1
  • Q. H. Liu
    • 1
  • R. G. Quhe
    • 1
  • Q. Y. Zheng
    • 1
  • J. X. Zheng
    • 1
    • 2
  • R. X. Fei
    • 1
  • Z. X. Gao
    • 1
  • J. Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Mesoscopic Physics and Department of PhysicsPeking UniversityBeijingP.R. China
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingP.R. China

Personalised recommendations