Exploring the patterns and evolution of self-organized urban street networks through modeling

  • Yikang RuiEmail author
  • Yifang Ban
  • Jiechen Wang
  • Jan Haas
Regular Article


As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.


Statistical and Nonlinear Physics 


  1. 1.
    M. Barthélemy, Phys. Rep. 499, 1 (2011)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A. Runions, A.M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, P. Prusinkiewicz, ACM Trans. Graph. 24, 702 (2005)CrossRefGoogle Scholar
  3. 3.
    J.R. Banavar, J. Damuth, A. Maritan, A. Rinaldo, Nature 421, 713 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Banavar, M.E. Moses, J.H. Brown, J. Damuth, A. Rinaldo, R.M. Sibly, A. Maritan, Proc. Natl. Acad. Sci. USA 107, 15816 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    I. Rodriguez-Iturbe, A. Rinaldo, Fractual River Basins: Chance and Self-Organization (Cambridge University Press, Cambridge, 1997)Google Scholar
  6. 6.
    J.R. Banavar, F. Colaiori, A. Flammini, A. Maritan, A. Rinaldo, J. Stat. Phys. 104, 1 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    R. Guimera, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Bianconi, P. Pin, M. Marsili, Proc. Natl. Acad. Sci. USA 106, 11433 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    C. von Ferber, T. Holovatch, Y. Holovatch, V. Palchykov, Eur. Phys. J. B 68, 261 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    E. Ravasz, A.-L. Barabasi, Phys. Rev. E 67, 026112 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2003)Google Scholar
  14. 14.
    C. Herrmann, M. Barthélemy, P. Provero, Phys. Rev. E 68, 026128 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    S.S. Manna, P. Sen, Phys. Rev. E 66, 066114 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Barthélemy, A. Flammini, J. Stat. Mech. L07002 (2006)Google Scholar
  17. 17.
    Y. Xie, T. Zhou, W. Bai, G. Chen, W. Xiao, B. Wang, Phys. Rev. E 75, 036106 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    R. Diestel, Graph Theory (Springer-Verlag, Heidelberg, New York, 2005)Google Scholar
  19. 19.
    S. Gerke, D. Schlatter, A. Steger, A. Taraz, Random Struct. Algorithms 32, 236 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A.P. Masucci, D. Smith, A. Crooks, M. Batty, Eur. Phys. J. B 71, 259 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    M. Barthélemy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. Barthélemy, A. Flammini, Netw. Spat. Econ. 9, 401 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    T. Courtat, C. Gloaguen, S. Douady, Phys. Rev. E 83, 036106 (2011)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    B.J.L. Berry, F.E. Horton, Geographic Perspective on Urban Systems (Prentice Hall, Englewood Cliffs NJ, 1970)Google Scholar
  26. 26.
    J.P. Rodrigue, C. Comtois, B. Slack, The Geography of Transport Systems (Routledge Education, Oxon, 2006)Google Scholar
  27. 27.
    B. Jiang, S. Zhao, J. Yin, J. Stat. Mech. P07008 (2008)Google Scholar
  28. 28.
    S. Marshall, Streets Patterns (Spon Press, Taylor & Francis Group, New York, 2005)Google Scholar
  29. 29.
    B. Jiang, C. Claramunt, Transactions in GIS 6, 295 (2002)CrossRefGoogle Scholar
  30. 30.
    J.E. Miller, D.J. Hunt, J.E. Abraham, P.A. Salvini, Comput. Environ. Urban Syst. 28, 9 (2004)CrossRefGoogle Scholar
  31. 31.
    P. Wagner, M. Wegener, Urban Land Use, DISP 170, 45 (2007)Google Scholar
  32. 32.
    X. Li, X. Liu, Int. J. Geogr. Inf. Sci. 22, 21 (2008)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    D.J. Aldous, Spatial Transportation Networks with Transfer Costs: Asymptotic Optimality of Hub and Spoke Models, in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, Cambridge, 2008), pp. 471–487Google Scholar
  34. 34.
    M.T. Gastner, M.E.J. Newman, Eur. Phys. J. B 49, 247 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    M.T. Gastner, M.E.J. Newman, Phys. Rev. E 74, 016117 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    J. Buhl, J. Gautrais, N. Reeves, R.V. Sole, S. Valverde, P. Kuntz, G. Theraulaz, Eur. Phys. J. B 49, 513 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    W.L. Garrison, D. Marble, US Army Transp. Command Tech. Rep. 62, 73 (1962)Google Scholar
  38. 38.
    K.J. Kansky, Structure of Transportation Network: Relationships Between Network Geometry and Regional Characteristics (University of Chicago Press, Chicago, 1963)Google Scholar
  39. 39.
    A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73, 066107 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    S. Lämmer, B. Gehlsen, D. Helbing, Physica A 363, 89 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    F. Xie, D. Levinson, Comput. Environ. Urban Syst. 33, 211 (2009)CrossRefGoogle Scholar
  43. 43.
    E. Strano, V. Nicosia, V. Latora, S. Porta, M. Barthelemy, Sci. Rep. 2, 296 (2012)CrossRefGoogle Scholar
  44. 44.
    L.C. Freeman, Soc. Netw. 1, 215 (1979)CrossRefGoogle Scholar
  45. 45.
    P. Crucitti, V. Latora, S. Porta, Chaos 16, 015113 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    S. Porta, P. Crucitti, V. Latora, Physica A 369, 853 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    H. Salas-Olmedo, working paper 1034, TSU, Oxon. UK (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yikang Rui
    • 1
    Email author
  • Yifang Ban
    • 1
  • Jiechen Wang
    • 2
  • Jan Haas
    • 1
  1. 1.Geoinformatics, Royal Institute of TechnologyStockholmSweden
  2. 2.Department of Geographic Information ScienceNanjing UniversityNanjingP.R. China

Personalised recommendations