Skip to main content
Log in

Magneto-transport in a quantum network: evidence of a mesoscopic switch

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate magneto-transport properties of a θ shaped three-arm mesoscopic ring where the upper and lower sub-rings are threaded by Aharonov-Bohm fluxes φ 1 and φ 2, respectively, within a non-interacting electron picture. A discrete lattice model is used to describe the quantum network in which two outer arms are subjected to binary alloy lattices while the middle arm contains identical atomic sites. It is observed that the presence of the middle arm provides localized states within the band of extended regions and lead to the possibility of switching action from a high conducting state to a low conducting one and vice versa. This behavior is justified by studying persistent current in the network. Both the total current and individual currents in three separate branches are computed by using second-quantized formalism and our idea can be utilized to study magnetic response in any complicated quantum network. The nature of localized eigenstates are also investigated from probability amplitudes at different sites of the quantum device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Jayannavar, P.S. Deo, Phys. Rev. B 51, 10175 (1995)

    Article  ADS  Google Scholar 

  2. T.P. Pareek, P.S. Deo, A.M. Jayannavar, Phys. Rev. B 52, 14657 (1995)

    Article  ADS  Google Scholar 

  3. M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983)

    Article  ADS  Google Scholar 

  4. H.F. Cheung, Y. Gefen, E.K. Riedel, W.H. Shih, Phys. Rev. B 37, 6050 (1988)

    Article  ADS  Google Scholar 

  5. B.L. Altshuler, Y. Gefen, Y. Imry, Phys. Rev. Lett. 66, 88 (1991)

    Article  ADS  Google Scholar 

  6. A. Schmid, Phys. Rev. Lett. 66, 80 (1991)

    Article  ADS  Google Scholar 

  7. S.K. Maiti, Physica E 31, 117 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. S.K. Maiti, Phys. Status Solidi B 248, 1933 (2011)

    Article  Google Scholar 

  9. S. Belluci, P. Onorato, Physica E 41, 1393 (2009)

    Article  ADS  Google Scholar 

  10. X. Chen, Z. Deng, W. Lu, S.C. Shen, Phys. Rev. B 61, 2008 (2000)

    Article  ADS  Google Scholar 

  11. H.-C. Wu, Y. Guo, X.-Y. Chen, B.-L. Gu, Phys. Rev. B 68, 125330 (2003)

    Article  ADS  Google Scholar 

  12. H.-M. Li, J.-L. Xiao, Physica B 396, 91 (2007)

    Article  ADS  Google Scholar 

  13. H.-M. Li, Y.-L. Huang, J.-L. Xiao, Int. J. Mod. Phys. B 22, 2255 (2008)

    Article  ADS  Google Scholar 

  14. S.K. Maiti, S. Saha, S.N. Karmakar, Eur. Phys. J. B 79, 209 (2011)

    Article  ADS  Google Scholar 

  15. S.K. Maiti, M. Dey, S. Sil, A. Chakrabarti, S.N. Karmakar, Europhys. Lett. 95, 57008 (2011)

    Article  ADS  Google Scholar 

  16. S.K. Maiti, Solid State Commun. 150, 2212 (2010)

    Article  ADS  Google Scholar 

  17. S.K. Maiti, J. Chowdhury, S.N. Karmakar, Solid State Commun. 135, 278 (2005)

    Article  ADS  Google Scholar 

  18. L.P. Levy, G. Dolan, J. Dunsmuir, H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990)

    Article  ADS  Google Scholar 

  19. V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher, A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991)

    Article  ADS  Google Scholar 

  20. D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)

    Article  ADS  Google Scholar 

  21. H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber, K.A. Moler, Phys. Rev. Lett. 102, 136802 (2009)

    Article  ADS  Google Scholar 

  22. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  23. D.H. Dunlap, H.L. Wu, P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990)

    Article  ADS  Google Scholar 

  24. H.-L. Wu, P. Phillips, Phys. Rev. Lett. 66, 1366 (1991)

    Article  ADS  Google Scholar 

  25. Y.M. Liu, R.W. Peng, X.Q. Huang, M. Wang, A. Hu, S.S. Jiang, J. Phys. Soc. Jpn 72, 346 (2003)

    Article  ADS  Google Scholar 

  26. X.F. Hu, Z.H. Peng, R.W. Peng, Y.M. Liu, F. Qiu, X.Q. Huang, A. Hu, S.S. Jiang, J. Appl. Phys. 95, 7545 (2004)

    Article  ADS  Google Scholar 

  27. R.L. Zhang, R.W. Peng, X.F. Hu, L.S. Cao, X.F. Zhang, M. Wang, A. Hu, S.S. Jiang, J. Appl. Phys. 99, 08F710 (2006)

    Article  Google Scholar 

  28. A. Chakrabarti, S.N. Karmakar, R.K. Moitra, Phys. Rev. B 50, 13276 (1994)

    Article  ADS  Google Scholar 

  29. A. Chakrabarti, S.N. Karmakar, R.K. Moitra, Phys. Rev. Lett. 74, 1403 (1995)

    Article  ADS  Google Scholar 

  30. S.K. Maiti, J. Appl. Phys. 110, 064306 (2011)

    Article  ADS  Google Scholar 

  31. W. Kohn, Phys. Rev. 133, A171 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  32. S.K. Maiti, J. Chowdhury, S.N. Karmakar, Phys. Lett. A 332, 497 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu K. Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Maiti, S.K. & Karmakar, S.N. Magneto-transport in a quantum network: evidence of a mesoscopic switch. Eur. Phys. J. B 85, 283 (2012). https://doi.org/10.1140/epjb/e2012-30163-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30163-6

Keywords

Navigation