Skip to main content
Log in

Hydrogenic impurity bound polaron in a quantum dot quantum well structure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A variational approach is used within the framework of effective mass approximation to study the binding energy of the hydrogenic impurity in a spherical quantum dot quantum well (QDQW) structure. The electron- and ion-longitudinal-optical (LO) phonon interactions are taken into account in the calculation. The numerical results for the CdS/HgS QDQW structure embedded in an insulator matrix show that the binding energy is sensitive both to the size of the core and the width of the shell. The binding energy decreases with the core radius being increased, and exhibits a maximum with the shell width being increased. The LO phonon effect lowers the binding energy of the on-center impurity and decreases sharply with the shell well-width being increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  ADS  Google Scholar 

  2. U. Woggon, S.V. Gaponenko, Phys. Stat. Sol. (b) 189, 285 (1995)

    Article  ADS  Google Scholar 

  3. A. Eychmüller, A. Mews, H. Weller, Chem. Phys. Lett. 208, 59 (1993)

    Article  ADS  Google Scholar 

  4. A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, J. Phys. Chem. 98, 934 (1994)

    Article  Google Scholar 

  5. J.W. Haus, H.S. Zhou, I. Honma, H. Komiyama, Phys. Rev. B 47, 1359 (1993)

    Article  ADS  Google Scholar 

  6. D. Schooss, A. Mews, A. Eychmüller, H. Weller, Phys. Rev. B 49, 17072 (1994)

    Article  ADS  Google Scholar 

  7. M. Braun, C. Burda, M.A. El-Sayed, J. Phys. Chem. A 105, 5548 (2001)

    Article  Google Scholar 

  8. M. Tkach, V. Holovatsky, O. Voitsekhivska, M. Mikhalyova, Phys. Stat. Sol. (b) 203, 373 (1997)

    Article  ADS  Google Scholar 

  9. L. Zhang, H.J. Xie, C.Y. Chen, Commun. Theor. Phys. 37, 755 (2002)

    Google Scholar 

  10. L. Zhang, H.J. Xie, C.Y. Chen, Phys. Rev. B 66, 205326 (2002)

    Article  ADS  Google Scholar 

  11. F. Comas, C. Trallero-Giner, Phys. Rev. B 67, 115301 (2003)

    Article  ADS  Google Scholar 

  12. F. Comas, N. Studart, Phys. Rev. B 69, 235321 (2004)

    Article  ADS  Google Scholar 

  13. Y. Xing, Z.P. Wang, X. Wang, Chin. Phys. B 18, 1935 (2009)

    Article  ADS  Google Scholar 

  14. G. Bastard, Phys. Rev. B 24, 4714 (1981)

    Article  ADS  Google Scholar 

  15. J.L. Zhu, Phys. Rev. B 39, 8780 (1989)

    Article  ADS  Google Scholar 

  16. J.L. Zhu, J.J. Xiong, B.L. Gu, Phys. Rev. B 41, 6001 (1990)

    Article  ADS  Google Scholar 

  17. N. Porras-Montenegro, S.T. Peìrez-Merchancano, Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  18. N. Porras-Montenegro, S.T. Pérez-Merchancano, A. Latgé, J. Appl. Phys. 74, 7624 (1993)

    Article  ADS  Google Scholar 

  19. V. Ranjan, V.A. Singh, J. Phys: Condens. Matter 13, 8105 (2001)

    Article  ADS  Google Scholar 

  20. P. Platzman, Phys. Rev. 125, 1961 (1962)

    Article  ADS  MATH  Google Scholar 

  21. H.J. Xie, C.Y. Chen, B.K. Ma, J. Phys: Condens. Matter 12, 8623 (2000)

    Article  ADS  Google Scholar 

  22. A.K. Manaselyan, A.A. Kirakosyan, Physica E 22, 825 (2004)

    Article  ADS  Google Scholar 

  23. C.L. Weng, I.C. Chen, Y.C. Tsai, Phys. Rev. B 76, 195313 (2007)

    Article  ADS  Google Scholar 

  24. X. Zhang, G.G. Xiong, X.B. Feng, Physica E 33, 120 (2006)

    Article  ADS  Google Scholar 

  25. S.H. Gong, D.Z. Yao, H.L. Jiang, H. Xiao, Phys. Lett. A 372, 3325 (2008)

    Article  ADS  MATH  Google Scholar 

  26. D.V. Melnikov, W. Beall Fowler, Phys. Rev. B 63, 165302 (2001)

    Article  ADS  Google Scholar 

  27. K. Chang, J.B. Xia, Phys. Rev. B 57, 9780 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Xing, Y. & Wang, Z.P. Hydrogenic impurity bound polaron in a quantum dot quantum well structure. Eur. Phys. J. B 85, 212 (2012). https://doi.org/10.1140/epjb/e2012-30131-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30131-2

Keywords

Navigation