Skip to main content
Log in

Coherence and spike death induced by bounded noise and delayed feedback in an excitable system

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The FitzHugh-Nagumo model with bounded noise and delayed feedback is numerically investigated. A minimum of the coefficient of variation (R) of interspike intervals is observed both as a function of the noise intensity and as a function of the noise correlation time, viz, the coherence resonance phenomenon. Also, in the scenario of purely noise-sustained irregular oscillations, there exists a maximum of R as a function of the delay time (τ d ) of feedback, namely, the suppressed coherence. Moreover, in the scenario of purely noise-sustained regular oscillations, the R with multiple peaks as a function of τ d can be observed, that is, the oscillatory coherence. Additionally, within the tailored parameter regime, spike death phenomenon can be obtained. These results may be helpful for making artificial devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)

    Article  ADS  Google Scholar 

  3. B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  4. A. Neiman, P.I. Saparin, L. Stone, Phys. Rev. E 56, 270 (1997)

    Article  ADS  Google Scholar 

  5. B. Lindner, L. Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)

    Article  ADS  Google Scholar 

  6. L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  7. G. Giacomelli, M. Giudici, S. Balle, J.R. Tredicce, Phys. Rev. Lett. 84, 3298 (2000)

    Article  ADS  Google Scholar 

  8. M.A. Arteaga, M. Valencia, M. Sciamanna, H. Thienpont, M. López-Amo, K. Panajotov, Phys. Rev. Lett. 99, 023903 (2007)

    Article  ADS  Google Scholar 

  9. I.Z. Kiss, J.L. Hudson, G.J. Escalera Santos, P. Parmananda, Phys. Rev. E 67, R035201 (2003)

    Article  ADS  Google Scholar 

  10. K. Miyakawa, H. Isikawa, Phys. Rev. E 66, 046204 (2002)

    Article  ADS  Google Scholar 

  11. E. Manjarrez, J.G. Rojas-Piloni, I. Méndez, L. Martínez, D. Vélez, D. Vázquez, A. Flores, Neurosci. Lett. 326, 93 (2002)

    Article  Google Scholar 

  12. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  13. L.R. Nie, D.C. Mei, Phys. Rev. E 77, 031107 (2008)

    Article  ADS  Google Scholar 

  14. L.C. Du, D.C. Mei, Phys. Lett. A 374, 3275 (2010)

    Article  ADS  MATH  Google Scholar 

  15. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  16. N.B. Janson, A.G. Balanov, E. Schoöll, Phys. Rev. Lett. 93, 010601 (2004)

    Article  ADS  Google Scholar 

  17. J. Pomplun, A. Amann, E. Schoöll, Europhys. Lett. 71, 366 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Pototsky, N. Janson, Phys. Rev. E 77, 031113 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. G.J. Escalera Santos, J. Escalona, P. Parmananda, Phys. Rev. E 73, 042102 (2006)

    Article  ADS  Google Scholar 

  20. P. Hänggi, Chem. Phys. Chem 3, 285 (2002)

    Article  Google Scholar 

  21. N. Baba, A. Amann, E. Schoöll, W. Just, Phys. Rev. Lett. 89, 074101 (2002)

    Article  ADS  Google Scholar 

  22. P.A. Tass, Phys. Rev. E 66, 036226 (2002)

    Article  ADS  Google Scholar 

  23. G.Q. Cai, C. Wu, Probab. Eng. Mech. 19, 197 (2004)

    Article  Google Scholar 

  24. R.V. Bobryk, A. Chrzeszczyk, Physica A 358, 263 (2005)

    Article  ADS  Google Scholar 

  25. A. d’Onofrio, Phys. Rev. E 81, 021923 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, F. Moss, Phys. Rev. Lett. 72, 2125 (1994)

    Article  ADS  Google Scholar 

  27. D. Nozaki, D.J. Mar, P. Grigg, J.J. Collins, Phys. Rev. Lett. 82, 2402 (1999)

    Article  ADS  Google Scholar 

  28. G. Mato, Phys. Rev. E 59, 3339 (1999)

    Article  ADS  Google Scholar 

  29. M. Perc, A.K. Green, C.J. Dixon, M. Marhl, Biophys. Chem. 132, 33 (2008)

    Article  Google Scholar 

  30. A. Manwani, Ph.D. thesis, Caltech, 2000

  31. F.J. Castro, M.N. Kuperman, M. Fuentes, H.S. Wio, Phys. Rev. E 64, 051105 (2001)

    Article  ADS  Google Scholar 

  32. L. Borland, Phys. Lett. A 245, 67 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114 (2001)

    Article  ADS  MATH  Google Scholar 

  34. M.A. Fuentes, H.S. Wio, R. Toral, Physica A 303, 91 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J.A. Revelli, A.D. Sánchez, H.S. Wio, Physica D 168-169, 165 (2002)

    Article  ADS  Google Scholar 

  36. H.S. Wio, R. Toral, Physica D 193, 161 (2004)

    Article  ADS  MATH  Google Scholar 

  37. R.V. Bobryk, A. Chrzeszczyk, Nonlinear Dyn. 51, 541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Guo, L.C. Du, D.C. Mei, Physica A 391, 1270 (2012)

    Article  ADS  Google Scholar 

  39. P. Jung, P. Hänggi, Phys. Rev. A 44, 8032 (1991)

    Article  ADS  Google Scholar 

  40. L.C. Du, D.C. Mei, Phys. Scr. 84, 015003 (2011)

    Article  ADS  Google Scholar 

  41. X.M. Liang, L. Zhao, Z.H. Liu, Phys. Rev. E 84, 031916 (2011)

    Article  ADS  Google Scholar 

  42. A. Samardak, A. Nogaret, N.B. Janson, A.G. Balanov, I. Farrer, D.A. Ritchie, Phys. Rev. Lett. 102, 226802 (2009)

    Article  ADS  Google Scholar 

  43. G. Schmid, I. Goychuk, P. Hänggi, Physica A 325, 165 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S.J. Wang, X.J. Xu, Z.X. Wu, Z.G. Huang, Y.H. Wang, Phy. Rev. E 78, 061906 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Yamaguchi, H. Shimizu, Physica D 11, 212 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R. FitzHugh, Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  47. J. Nagumo, S. Arimoto, S. Yoshitzawa, Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  48. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  49. J.M. Sancho, M. San Miguel, S.L. Katz, J.D. Gunton, Phys. Rev. A 26, 1589 (1982)

    Article  ADS  Google Scholar 

  50. A.M. Lacasta, F. Sagués, J.M. Sancho, Phys. Rev. E 66, R045105 (2002)

    Article  ADS  Google Scholar 

  51. J.M. Casado, Phys. Lett. A 235, 489 (1997)

    Article  ADS  Google Scholar 

  52. Md. Nurujjaman, Phys. Rev. E 81, 036203 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Du, L.C. & Mei, D.C. Coherence and spike death induced by bounded noise and delayed feedback in an excitable system. Eur. Phys. J. B 85, 182 (2012). https://doi.org/10.1140/epjb/e2012-30116-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30116-1

Keywords

Navigation