Skip to main content
Log in

Markovian evolution of classical and quantum correlations in transverse-field XY model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information I(ρ AB ), the classical correlations C(ρ AB ) and the quantum correlations Q(ρ AB ), as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 60, 407 (1961)

    MathSciNet  ADS  Google Scholar 

  2. E. Barouch, B. McCoy, Phys. Rev. A 3, 786 (1971)

    Article  ADS  Google Scholar 

  3. P. Pfeuty, Ann. Phys. 57, 79 (1970)

    Article  ADS  Google Scholar 

  4. M. Zhong, P. Tong, J. Phys. A Math. Theor. 43, 505302 (2010)

    Article  MathSciNet  Google Scholar 

  5. A. Dutta, U. Divakaran, B.K. Chakrabarti, T.F. Rosenbaum, G. Aeppli, arXiv:1012.0653v1 [cond-mat.stat-mech]

  6. J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  8. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  10. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  11. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  12. T. Werlang, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  13. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Bose, E. Chattopadhyay, Phys. Rev. A 66, 062320 (2002)

    Article  ADS  Google Scholar 

  15. L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250403 (2004)

    Article  MathSciNet  Google Scholar 

  16. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  17. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  19. M.P. Almeida et al., Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  20. T. Werlang, S. Souza, F.F. Fanchini, C. Villas Boas, Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  21. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2001)

    Article  MathSciNet  Google Scholar 

  23. A.K. Pal, I. Bose, J. Phys. B At. Mol. Opt. Phys. 44, 045101 (2011)

    Article  ADS  Google Scholar 

  24. A.K. Pal, I. Bose, Eur. Phys. J. B 85, 36 (2012)

    Article  ADS  Google Scholar 

  25. A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acin, Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  26. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhong, X.-B. Zoa, G.-C. Guo, Nat. Commun. 1, 7 (2010)

    Google Scholar 

  27. R. Auccaise et al., Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  28. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81 052107 (2010)

    Article  ADS  Google Scholar 

  29. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)

  30. J. Maziero, H.C. Guzman, L.C. Céleri, M.S. Sarandy, R.M. Serra, Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  31. J. Maziero, L.C. Céleri, R.M. Serra, M.S. Sarandy, Phys. Lett. A 376, 1540 (2012)

    Article  ADS  Google Scholar 

  32. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  33. T. Werlang, G.A.P. Ribeiro, G. Rigolin (2012), arXiv:1205.1046v1[quant-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A.K., Bose, I. Markovian evolution of classical and quantum correlations in transverse-field XY model. Eur. Phys. J. B 85, 277 (2012). https://doi.org/10.1140/epjb/e2012-30108-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30108-1

Keywords

Navigation