Skip to main content
Log in

Heat conduction information filtering via local information of bipartite networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Information filtering based on structure properties of user-object bipartite networks is of both theoretical interest and practical significance in modern science. In this paper, we empirically investigate the framework of heat-conduction-based (HC) information filtering [Y.-C. Zhang et al., Phys. Rev. Lett. 99, 154301 (2007)] in terms of the local node similarity. We compare nine well-known local similarity measures on four real networks. The results indicate that the local-heat-conduction-based similarity has the best accuracy and diversity simultaneously. Embedding the object degree effect into the heat conduction process, we present a new user similarity measure. Experimental results on four real networks demonstrate that the improved similarity measure could generate remarkably higher diversity and novelty results than the state-of-the-art HC information filtering algorithms based on local information, and the accuracy is also increased greatly or approximately unchanged. Since the improved similarity index only need the local information of user-object bipartite networks, it is therefore a strong candidate for potential application in information filtering of large-scale bipartite networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J.R. Wakeling, Y.-C. Zhang, Proc. Natl. Acad. Sci. USA 107, 4511 (2010)

    Article  ADS  Google Scholar 

  2. G. Adomavicius, A. Tuzhilin, IEEE Trans. Knowl. Data Eng. 17, 734 (2005)

    Article  Google Scholar 

  3. J.P. Onnela, F. Reed-Tsochas, Proc. Natl. Acad. Sci. USA 107, 18375 (2010)

    Article  ADS  Google Scholar 

  4. F.R. Lynch, The Diversity Machine: The Drive to Change the “White Male Workplace” (Free Press, 1997)

  5. G. Linden, B. Smith, J. York, IEEE Internet Computing 7, 76 (2003)

    Article  Google Scholar 

  6. Y.-C. Zhang, M. Blattner, Y.-K. Yu, Phys. Rev. Lett. 99, 154301 (2007)

    Article  ADS  Google Scholar 

  7. T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Phys. Rev. E 76, 046115 (2007)

    Article  ADS  Google Scholar 

  8. J.-G. Liu, B.-H. Wang, Q. Guo, Int. J. Mod. Phys. C 20, 285 (2009)

    Article  ADS  Google Scholar 

  9. J.-G. Liu, T. Zhou, H.-A. Che, B.-H. Wang, Y.-C. Zhang, Phys. A 389, 881 (2010)

    Article  Google Scholar 

  10. T. Zhou, R.-Q. Su, R.-R. Liu, L.-L. Jiang, B.-H. Wang, Y.-C. Zhang, New J. Phys. 11, 123008 (2009)

    Article  ADS  Google Scholar 

  11. J.-G. Liu, K. Shi, Q. Guo, Phys. Rev. E 85, 016118 (2012)

    Article  ADS  Google Scholar 

  12. J.-G. Liu, T. Zhou, Q. Guo, Phys. Rev. E 84, 037101 (2011)

    Article  ADS  Google Scholar 

  13. M. Kitsak, D. Krioukov, Phys. Rev. E 82, 026114 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. Z. Huang, H. Chen, D. Zeng, ACM Trans. Inf. Syst. 22, 116 (2004)

    Article  Google Scholar 

  15. M. Faloutsos, P. Faloutsos, C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999)

    Article  Google Scholar 

  16. A. Broder, R. Kumar, F. Moghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Comput. Netw. 33, 309 (2000)

    Article  Google Scholar 

  17. Z. Huang, D.D. Zeng, H. Chen, Manage. Sci. 53, 1146 (2007)

    Article  MATH  Google Scholar 

  18. M.-S. Shang, L. Lü, Y.-C. Zhang, T. Zhou, Europhys. Lett. 90, 48006 (2010)

    Article  ADS  Google Scholar 

  19. Y.-L. Wang, T. Zhou, J.-J. Shi, J. Wang, D.-R. He, Phys. A 388, 2949 (2009)

    Article  Google Scholar 

  20. J. Ohkubo, K. Tanaka, T. Horiguchi, Phys. Rev. E 72, 036120 (2005)

    Article  ADS  Google Scholar 

  21. M.L. Goldstein, S.A. Morris, G.G. Yen, Phys. Rev. E 71, 026108 (2005)

    Article  ADS  Google Scholar 

  22. J.-L. Guillaume, M. Latapy, Phys. A 371, 795 (2006)

    Article  Google Scholar 

  23. E. Birmelé, Discr. Appl. Math. 157, 2267 (2009)

    Article  MATH  Google Scholar 

  24. M. Latapya, C. Magnienb, N.D. Vecchio, Social Netw. 30, 31 (2008)

    Article  Google Scholar 

  25. M.J. Barber, Phys. Rev. E 76, 066102 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  27. M.E.J. Newman, Phys. Rev. E 66, 016132 (2001)

    Article  ADS  Google Scholar 

  28. T. Zhou, J.-G. Liu, B.-H Wang, Chin. Phys. Lett. 23, 2327 (2006)

    Article  ADS  Google Scholar 

  29. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  30. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Arenas, A. Díaz-Guilera, C.J. Pérez-Vicente, Phys. Rev. Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  32. J.-G. Liu, Q. Guo, Y.-C. Zhang, Phys. A 390, 2414 (2011)

    Article  Google Scholar 

  33. X. Su, T.M. Khoshgoftaar, Advances in Artificial Intelligence 421425 (2009)

  34. J.L. Herlocker, J.A. Konstan, K. Terveen, J.T. Riedl, ACM Trans. Inf. Syst. 22, 5 (2004)

    Article  Google Scholar 

  35. J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, J. Riedl, Commun. ACM 40, 77 (1997)

    Article  Google Scholar 

  36. T. Zhou, L. Lü, Y.-C. Zhang, Eur. Phys. J. B 71, 623 (2009)

    Article  ADS  MATH  Google Scholar 

  37. P. Jaccard, Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547 (1901)

    Google Scholar 

  38. T. Sorensen, Biol. Skr. 5, 1 (1948)

    Google Scholar 

  39. X. Pan, G.-S Deng, J.-G. Liu, Chin. Phys. Lett. 27, 068903 (2010)

    Article  ADS  Google Scholar 

  40. J.L. Herlocker, J.A. Konstan, A. Borchers, J. Riedl, in Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Theoretical Models (1999), pp. 230–237

  41. H. Luo, C. Niu, R. Shen, C. Ullrich, Mach. Learn. 72, 231 (2008)

    Article  Google Scholar 

  42. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, in Proceedings of the 10th International World Wide Web Conference (2001), pp. 285–295

  43. M. Deshpande, G. Karypis, ACM Trans. Inf. Syst. 22, 143 (2004)

    Article  Google Scholar 

  44. M. Gao, Z.F. Wu, F. Jiang, Inf. Proc. Lett. 111, 440 (2011)

    Article  MathSciNet  Google Scholar 

  45. G. Salton, M.J. McGill, Introduction to Modern Information Retrieval (McGraw-Hill Inc., New York, 1986)

  46. L.A. Adamic, E. Adar, Social Netw. 25, 211 (2003)

    Article  Google Scholar 

  47. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1553 (2002)

    Article  ADS  Google Scholar 

  48. E.A. Leicht, P. Holme, M.E.J. Newman, Phys. Rev. E 73, 026120 (2006)

    Article  ADS  Google Scholar 

  49. Y. Yang, X. Liu, in Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval (1999)

  50. C.J. Rijsbergen, Information Retireval (Butterworths, London, 1979)

  51. F. Fouss, A. Pirotte, J.-M. Renders, M. Saerens, IEEE Trans. Knowl. Data. Eng. 19, 355 (2007)

    Article  Google Scholar 

  52. D. Sun, T. Zhou, J.-G. Liu, R.-R. Liu, C.-X. Jia, B.-H. Wang, Phys. Rev. E 80, 017101 (2009)

    Article  ADS  Google Scholar 

  53. S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.G. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Leng, R., Shi, K. et al. Heat conduction information filtering via local information of bipartite networks. Eur. Phys. J. B 85, 286 (2012). https://doi.org/10.1140/epjb/e2012-30095-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30095-1

Keywords

Navigation