Skip to main content
Log in

The role of size in spin properties of zigzag graphene nanoribbon

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of ribbon size on the spin properties of zigzag graphene nanoribbon (ZGNR) with and without edge pentagon-heptagon reconstruction are investigated using spin-polarized density functional theory. It is found that when ribbon width is less than 26.31 Å, the Coulomb and RKKY-like interaction between two ribbon-edges result in the edge state splitting. For a wider ZGNR, the interedge coupling is negligible. In addition to stabilizing the system and weakening the interedge coupling, the edge pentagon-heptagon reconstruction could demagnetize the ZGNR. In perfect and single-edge reconstructed ZGNR, the magnetic moment depends on ribbon width, and the change of magnetic moment becomes inconspicuous with increasing ribbon width. Double-edge reconstructed ZGNR shows nonmagnetic. It may be useful for fabricating graphene-based nanoelectronic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007)

    Article  ADS  Google Scholar 

  3. H. Lee, Y. Son, N. Park, S. Han, J. Yu, Phys. Rev. B 72, 174431 (2005)

    Article  ADS  Google Scholar 

  4. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  5. B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M.D. Giles, M.A. Stettler, D.E. Nikonov, Appl. Phys. Lett. 88, 142102 (2006)

    Article  ADS  Google Scholar 

  6. G. Liang, N. Neophytou, D.E. Nikonov, M.S. Lundstrom, IEEE Trans. Electron Devices 54, 677 (2007)

    Article  ADS  Google Scholar 

  7. G. Fiori, G. Iannaccone, IEEE Electron Device Lett. 28, 760 (2007)

    Article  ADS  Google Scholar 

  8. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  9. Z. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Physica E 40, 228 (2007)

    Article  ADS  Google Scholar 

  10. M.Y. Han, B. Zyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  11. L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró Nat. Nanotechnol. 3, 397 (2008)

    Article  Google Scholar 

  12. A. Ghosh, K. Subrahmanyam, K. Krishna, S. Datta, A. Govindaraj, S. Pati, C. Rao, J. Phys. Chem. C 112, 15704 (2008)

    Article  Google Scholar 

  13. L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. Kelly, B. Yakobson, P. Ajayan, Nano Res. 1, 116 (2008)

    Article  Google Scholar 

  14. J. Campos-Delgado et al., Nano Lett. 8, 2773 (2008)

    Article  ADS  Google Scholar 

  15. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn 65, 1920 (1996)

    Article  ADS  Google Scholar 

  16. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  17. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  18. D. Kosynkin, A. Higginbotham, A. Sinitskii, J. Lomeda, A. Dimiev, B. Price, J. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  19. C. Cong, T. Yu, H. Wang, K. Zheng, P. Gao, X. Chen, Q. Zhang, Small 24, 2837 (2010)

    Article  Google Scholar 

  20. C. Cong, T. Yu, Z. Ni, L. Liu, Z. Shen, W. Huang, J. Phys. Chem. C 113, 6529 (2009)

    Article  Google Scholar 

  21. M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Adv. Mater. 21, 2098 (2009)

    Article  Google Scholar 

  22. Y. Zhou, Q. Bao, B. Varghese, L.A.L. Tang, C.K. Tan, C.H. Sow, K.P. Loh, Adv. Mater. 22, 67 (2009)

    Article  MATH  Google Scholar 

  23. Y. He, H. Dong, T. Li, C. Wang, W. Shao, Y. Zhang, L. Jiang, W. Hu, Appl. Phys. Lett. 97, 133301 (2010)

    Article  ADS  Google Scholar 

  24. Y. Zhou, K. Loh, Adv. Mater. 22, 3615 (2010)

    Article  Google Scholar 

  25. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  27. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  29. X. Dai, J. Zhao, M. Xie, Y. Tang, Y. Li, B. Zhao, Eur. Phys. J. B 80, 343 (2011)

    Article  ADS  Google Scholar 

  30. Y. Son, M. Cohen, S. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  31. P. Koskinen, S. Malola, auml, H. kkinen, Phys. Rev. B 80, 073401 (2009)

  32. M. Ishigami, J. Chen, W. Cullen, M. Fuhrer, E. Williams, Nano Lett. 7, 1643 (2007)

    Article  ADS  Google Scholar 

  33. S. Bhowmick, U.V. Waghmare, Phys. Rev. B 81, 155416 (2010)

    Article  ADS  Google Scholar 

  34. L. Song, X. Zheng, R. Wang, Z. Zeng, J. Phys. Chem. C 114, 12145 (2010)

    Article  Google Scholar 

  35. Z. Xu, M. Buehler, Nanotechnology 20, 375704 (2009)

    Article  Google Scholar 

  36. W. Li, M. Zhao, X. Zhao, Y. Xia, Y. Mu, Phys. Chem. Chem. Phys. 12, 13699 (2010)

    Article  Google Scholar 

  37. M. Braun, P.R. Struck, G. Burkard, Phys. Rev. B 84, 115445 (2011)

    Article  ADS  Google Scholar 

  38. P. Bruno, C. Chappert, Phys. Rev. B 46, 261 (1992)

    Article  ADS  Google Scholar 

  39. A.M. Black-Schaffer, Phys. Rev. B 81, 205416 (2010)

    Article  ADS  Google Scholar 

  40. A.M. Black-Schaffer, Phys. Rev. B 82, 073409 (2010)

    Article  ADS  Google Scholar 

  41. S.H. Liu, R.P. Gupta, S.K. Sinha, Phys. Rev. B 4, 1100 (1971)

    Article  ADS  Google Scholar 

  42. S. Dutta, S.K. Pati, Carbon 48, 4409 (2010)

    Article  Google Scholar 

  43. E. Kan, Z. Li, J. Yang, J. Hou, J. Am. Chem. Soc. 130, 4224 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J.H., Dai, X.Q., Zhao, B. et al. The role of size in spin properties of zigzag graphene nanoribbon. Eur. Phys. J. B 85, 220 (2012). https://doi.org/10.1140/epjb/e2012-30077-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30077-3

Keywords

Navigation