Skip to main content
Log in

Effects of dephasing on the spin-dependent currents and noise power in a molecular junction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The role of dephasing reservoirs on the spin-dependent transport through a polythiophene (PT) molecule sandwiched between ferromagnetic 3-dimensional electrodes as a FM/PT/FM junction is numerically investigated. Our calculations are performed based on a tight-binding model and a generalized Green’s function method in the well-known Landauer-Büttiker formalism. We investigate the influence of dephasing reservoirs on the spin dependent currents, noise power, Fano factor and tunnel magnetoresistance (TMR) of the junction. Our results illustrate that the presence of dephasing reservoirs give rise to increase the currents and noise power due to reduced destructive interference resulting from the Büttiker probes. We found the significant change in the Fano factor and TMR of the FM/PT/FM junction in the presence of dephasing reservoirs. Furthermore, we explore the influence of the electrode/molecule coupling strength on the transport properties of the FM/PT/FM junction. It is shown that the electrode/molecule coupling strength may control the spin-dependent transport properties and so it is a significant parameter for designing of the efficient molecular spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sothmann, J. König, Phys. Rev. B 82, 245319 (2010)

    Article  ADS  Google Scholar 

  2. Z.C. Wang, G. Su, S. Gao, Phys. Rev. B 63, 224419 (2001)

    Article  ADS  Google Scholar 

  3. S. Gardelis, C.G. Smith, C.H.W. Barnes, E.H. Linfield, D.A. Ritchie, Phys. Rev. B 60, 7764 (1999)

    Article  ADS  Google Scholar 

  4. P.N. Hai, Y. Sakata, M. Yokoyama, S. Ohya, M. Tanaka, Phys. Rev. B 77, 214435 (2008)

    Article  ADS  Google Scholar 

  5. K. Tsukagoshi, B.W. Alphenaar, H. Ago, Nature 401, 572 (1999)

    Article  ADS  Google Scholar 

  6. Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Nature 427, 821 (2004)

    Article  ADS  Google Scholar 

  7. V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbanera, Solid State Commun. 122, 181 (2002)

    Article  ADS  Google Scholar 

  8. M. Ouyang, D.D. Awschalom, Science 301, 1074 (2003)

    Article  ADS  Google Scholar 

  9. J.R. Petta, S.K. Slater, D.C. Ralph, Phys. Rev. Lett. 93, 136601 (2004)

    Article  ADS  Google Scholar 

  10. J.A. Merlo, C.D. Frisbie, J. Phys. Chem. B 108, 19169 (2004)

    Article  Google Scholar 

  11. G.M. Tsivgoulis, J.M. Lehn, Adv. Mater. 9, 39 (1997)

    Article  Google Scholar 

  12. R.V. Belosludov, A.A. Farajian, H. Mizuseki, K. Ichinoseki, Y. Kawazoe, Jpn J. Appl. Phys. 43, 2061 (2004)

    Article  ADS  Google Scholar 

  13. T. Noda, Y. Shirota, J. Am. Chem. Soc. 120, 9714 (1998)

    Article  Google Scholar 

  14. N. Noma, T. Tsuzuki, Y. Shirota, Adv. Mater. 7, 647 (1995)

    Article  Google Scholar 

  15. T. Yamamoto, M. Zama, A. Yamamoto, Chem. Lett. 14, 563 (1985)

    Article  Google Scholar 

  16. F. Garnier, G. Tourillon, M. Gazard, J.C. Dubois, J. Electroanal. Chem. Interfacial Electrochem. 148, 299 (1983)

    Article  Google Scholar 

  17. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  18. N. Sergueev, D. Roubtsov, H. Guo, Phys. Rev. Lett. 95, 146803 (2005)

    Article  ADS  Google Scholar 

  19. N. Sergueev, A.A. Demkov, H. Guo, Phys. Rev. B. 75, 233418 (2007)

    Article  ADS  Google Scholar 

  20. M. Büttiker, Phys. Rev. B 33, 3020 (1986)

    Article  ADS  Google Scholar 

  21. M. Büttiker, IBM J. Res. Dev. 32, 63 (1988)

    Article  Google Scholar 

  22. P.W. Brouwer, C.W.J. Beenakker, Phys. Rev. B 55, 4695 (1997)

    Article  ADS  Google Scholar 

  23. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  24. Ya.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  25. R. Guerrero, F.G. Aliev, Y. Tserkovnyak, T.S. Santos, J.S. Moodera, Phys. Rev. Lett. 97, 266602 (2006)

    Article  ADS  Google Scholar 

  26. L. DiCarlo, J.R. Williams, Yiming Zhang, D.T. McClure, C.M. Marcus, Phys. Rev. Lett. 100, 156801 (2008)

    Article  ADS  Google Scholar 

  27. B. Dong, H.L. Cui, X.L. Lei, N.J.M. Horing, Phys. Rev. B 71, 045331 (2005)

    Article  ADS  Google Scholar 

  28. F. Wu, P. Queipo, A. Nasibulin, T. Tsuneta, T.H. Wang, E. Kauppinen, P.J. Hakonen, Phys. Rev. Lett. 99, 156803 (2007)

    Article  ADS  Google Scholar 

  29. G.C. Hu, J.H. Wei, S.J. Xie, Appl. Phys. Lett. 91, 142115 (2007)

    Article  ADS  Google Scholar 

  30. S. Xie, L. Mei, Phys. Rev. B 50, 13364 (1994)

    Article  ADS  Google Scholar 

  31. J.Y. Fu, D.S. Liu, S.J. Xie, Phys. E 40, 915 (2008)

    Article  Google Scholar 

  32. Y. Asai, H. Fukuyama, Phys. Rev. B 72, 085431 (2005)

    Article  ADS  Google Scholar 

  33. J.L. D’Amato, H.M. Pastawski, Phys. Rev. B 41, 7411 (1990)

    Article  ADS  Google Scholar 

  34. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

  35. W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.I. Kubiak, J. Chem. Phys. 109, 2874 (1998)

    Article  ADS  Google Scholar 

  36. B. Wang, Y. Zhu, W. Ren, J. Wang, H. Guo, Phys. Rev. B 75, 235415 (2007)

    Article  ADS  Google Scholar 

  37. G.C. Hu, J.H. Wei, S.J. Xie, Appl. Phys. Lett. 91, 142115 (2007)

    Article  ADS  Google Scholar 

  38. Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Nature 427, 821 (2004)

    Article  ADS  Google Scholar 

  39. C. Kergueris, J.P. Bourgoin, S. Palacin, Phys. Rev. B 59, 12505 (1999)

    Article  ADS  Google Scholar 

  40. J.S. Moodera et al., Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  41. J.S. Moodera, L.R. Kinder, J. Appl. Phys. 79, 4724 (1996)

    Article  ADS  Google Scholar 

  42. J.S. Moodera et al., Phys. Rev. Lett. 80, 2941 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadi Fouladi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi Fouladi, A., Ketabi, S.A., Elahi, S.M. et al. Effects of dephasing on the spin-dependent currents and noise power in a molecular junction. Eur. Phys. J. B 85, 163 (2012). https://doi.org/10.1140/epjb/e2012-30056-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30056-8

Keywords

Navigation