Skip to main content
Log in

Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T 1 < T c  < T 2, where T c is the Onsager critical temperature. In this way one can observe a phase transition between an ordered phase (T < T c ) and a disordered one (T > T c ) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m ≡ 0 corresponding to T = ∞, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m = m 0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T = 0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements (t → ∞) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Saito, S. Takesue, S. Miyashita, Phys. Rev. E 59, 2783 (1999)

    Article  ADS  Google Scholar 

  2. M. Neek-Amal, R. Moussavi, H.R. Sepangi, Physica A 371, 424 (2006)

    Article  ADS  Google Scholar 

  3. M. Casartelli, N. Macellari, A. Vezzani, Eur. Phys. J. B 56, 149 (2007)

    Article  ADS  Google Scholar 

  4. E. Agliari, M. Casartelli, A. Vezzani, Eur. Phys. J. B 60, 499 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Agliari, M. Casartelli, A. Vezzani, J. Stat. Mech., P07041 (2009)

  6. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  7. M. Tanaka, T. Wakamatsu, H. Kobayashi, IEEE Trans. J. Magn. Jpn 2, 728 (1987)

    Article  Google Scholar 

  8. M.M. Schwickert, K.A. Hannibal, M.F. Toney, M. Best, L. Folks, J.-U. Thiele, A.J. Kellock, D. Weller, J. Appl. Phys. 87, 6956 (2000)

    Article  ADS  Google Scholar 

  9. L. Yoong Xiong, E. Ahmad, Y. Xu, K. Barmak, IEEE Trans. Magn. 41, 3328 (2005)

    Article  ADS  Google Scholar 

  10. M. Creutz, Phys. Rev. Lett. 50, 1411 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Kadanoff, J. Swift, Phys. Rev. 165, 310 (1968)

    Article  ADS  Google Scholar 

  12. G.Y. Vichniac, Physica D 10, 96 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, Inc., USA, 2005)

  14. E.V. Albano, M.A. Bab, G. Baglietto, R.A. Borzi, T.S. Grigera, E.S. Loscar, D.E. Rodriguez, M.L. Rubio Puzzo, G.P. Saracco, Rep. Prog. Phys. 74, 026501 (2011)

    Article  ADS  Google Scholar 

  15. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  ADS  Google Scholar 

  16. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H.K. Janssen, B. Schaub, B. Schmittmann, Z. Phys. B 73, 539 (1989)

    Article  ADS  Google Scholar 

  18. K. Christensen, N.R. Moloney, Complexity and Criticality (Imperial College Press, London, 2005)

  19. K. Okano, L. Schülke, K. Yamagishi, B. Zheng, Nucl. Phys. B 485, 727 (1997)

    Article  ADS  Google Scholar 

  20. F.G. Wang, C.K. Hu, Phys. Rev. E 56, 2310 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Albano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muglia, J., Albano, E.V. Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient. Eur. Phys. J. B 85, 258 (2012). https://doi.org/10.1140/epjb/e2012-30051-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30051-1

Keywords

Navigation