Skip to main content

Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

Abstract

In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

This is a preview of subscription content, access via your institution.

References

  1. B.J. West, Fractal Physiology and chaos in medicine (World Scientific, Singapore, 1990)

  2. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Co., New York, 1982)

  3. A. Eshel, Plant, Cell Environ. 21, 247 (1998)

    Article  Google Scholar 

  4. F. Family, B.R. Masters, D.E. Platt, Physica D 38, 98 (1989)

    ADS  Article  Google Scholar 

  5. M.F. Shlesinger, B.J. West, Phys. Rev. Lett. 67, 2106 (1991)

    ADS  Article  Google Scholar 

  6. L.D. Zhang, J.Z. Liu, G.H. Yue, Biophys. J. 85, 4041 (2003)

    Article  Google Scholar 

  7. F. Caserta, W.D. Eldred, E. Fernandez, R.E. Hausman, L.R. Stanford, S.V. Bulderev, S. Schwarzer, H.E. Stanley, J. Neurosci. Methods 56, 133 (1995)

    Article  Google Scholar 

  8. M. Zamir, J. Theoret. Biol. 212, 183 (2001)

    Article  Google Scholar 

  9. P. Katsaloulis, D.A. Verganelakis, A. Provata, Fractals 17, 181 (2009)

    Article  Google Scholar 

  10. M. Makuuchi, J. Bahlmann, A. Anwander, A.D. Friederici, Proc. Natl. Acad. Sci. 106, 8362 (2009)

    ADS  Article  Google Scholar 

  11. M.V. Berry, J. Phys. A 12 781 (1979)

    MathSciNet  ADS  Article  Google Scholar 

  12. P. Grassberger, I. Procaccia, Phys. D 9, 189 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  13. P.J. Basser, J. Mattiello, D. LeBihan, J. Magn. Reson. B 103, 247 (1994)

    Article  Google Scholar 

  14. C. Lenglet, J.S.W. Campbell, M. Descoteaux, G. Haro, P. Savadjiev, D. Wassermann, A. Anwander, R. Deriche, G.B. Pike, G. Sapiro, K. Siddiqi, P. Thompson, Mathematical Methods for Diffusion MRI Processing NeuroImage, Special issue on Mathematics in Brain Imaging 45, S111 (2009)

    Google Scholar 

  15. P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, A. Aldroubi, Magn. Reson. Med. 44, 625 (2000)

    Article  Google Scholar 

  16. S. Mori, P.C.M. van Zijl, NMR in Biomedicine 15, 468 (2002)

    Article  Google Scholar 

  17. N. Toussaint, J.C. Souplet, P. Fillard, Medinria: Medical image navigation and research tool by inria, in Proc. of MICCAI’07 Workshop on Interaction in medical image analysis and visualization (Brisbane, Australia, 2007)

  18. D.E. Knuth, The Art of Computer Programming (Addison-Wesley, London, 1969)

  19. A. Provata, P. Katsaloulis, D.A. Verganelakis, Chaos, Solitons & Fractals 45, 174 (2012)

    ADS  Article  Google Scholar 

  20. R.P. Kanwal, Generalized Functions: Theory and Technique (Birkhäuser, Boston, 1998)

  21. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Provata.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katsaloulis, P., Ghosh, A., Philippe, A. et al. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI. Eur. Phys. J. B 85, 150 (2012). https://doi.org/10.1140/epjb/e2012-30045-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30045-y

Keywords

  • Statistical and Nonlinear Physics