Skip to main content

Advertisement

Log in

High-pressure effect on elastic constants, stacking fault energy and correlation with dislocation properties in MgO and CaO

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The elastic properties and the generalized-stacking-fault-energy (GSFE) in MeO (Me = Mg, Ca) under different pressures have been calculated using the first principle calculations. In the anisotropic elasticity theory approximation, by using the Foreman’s method, the core structure and Peierls stress of \(\tfrac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}\) edge dislocation, screw dislocation and mixed dislocation in MgO and CaO within the improved Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account have been investigated. The Peierls stresses of \(\tfrac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}\) edge dislocation and screw dislocation in pure MgO obtained here are 40 MPa and 160 MPa, respectively, which are consistent with the previous calculations and the experiments. Furthermore, the dependence of the elastic constants, the generalized-stacking-fault-energy (GSFE), the core structure and the Peierls stress on pressure have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Sammis, Ph.D. thesis, California Institute of Technology, 1971 (unpublished), and references therein

  2. F.D. Stacey, Physics of the Earth (Wiley, New York, 1969), Chaps. 1 and 4

  3. B.B. Karki et al., Am. Mineral. 82, 51 (1997)

    Google Scholar 

  4. B.B. Karki, G.J. Ackland, J. Crain, J. Phys.: Condens. Matter 9, 8579 (1997)

    Article  ADS  Google Scholar 

  5. B.B. Karki, J. Crain, J. Geophys. Res. 103, 12405 (1998)

    Article  ADS  Google Scholar 

  6. B.B. Karki et al., Phys. Rev. B 61, 8793 (2000)

    Article  ADS  Google Scholar 

  7. T. Tsuchiya, K. Kawamura, J. Chem. Phys. 114, 10086 (2001)

    Article  ADS  Google Scholar 

  8. Y.D. Guo et al., Phys. B 373, 334 (2006)

    Article  ADS  Google Scholar 

  9. Y. Deng et al., Phys. B 392, 2007 (2007)

    Article  Google Scholar 

  10. F. Marinelli, A. Lichanot, Chem. Phys. Lett. 367, 430 (2003)

    Article  ADS  Google Scholar 

  11. H. Baltache et al., Phys. B 344, 334 (2004)

    Article  ADS  Google Scholar 

  12. G. Schoeck, Mater. Sci. Eng. A 400-401, 7 (2005)

    Article  Google Scholar 

  13. J.P. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1982)

  14. Y. Xiang, Commun. Comput. Phys. 1, 383 (2006)

    Google Scholar 

  15. F.M. Chisholm, S. Kumar, P. Hazzledine, Nature 307, 701 (2005)

    Google Scholar 

  16. R. Chang, J. Appl. Phys. 32, 1127 (1961)

    Article  ADS  Google Scholar 

  17. A. Ikushima, T. Suzeki, J. Phys. Soc. Jpn 18, 163 (1963)

    Article  Google Scholar 

  18. R.N. Singh, R.L. Coble, J. Appl. Phys. 45, 981 (1974)

    Article  ADS  Google Scholar 

  19. A. Seeger, Philos. Mag. 1, 651 (1956)

    Article  ADS  Google Scholar 

  20. M.P. Puls, M.J. Norgett, J. Appl. Phys. 47, 466 (1976)

    Article  ADS  Google Scholar 

  21. C.H. Woo, M.P. Puls, Philos. Mag. 35, 727 (1977)

    Article  ADS  Google Scholar 

  22. Y. Gaillard, C. Tromas, J. Woirgard, Acta. Mater. 54, 1409 (2006)

    Article  Google Scholar 

  23. P. Carrez, D. Ferre, P. Cordier, Modelling Simul. Mater. Sci. Eng. 17, 035010 (2009)

    Article  ADS  Google Scholar 

  24. S.F. Wang, Phys. Rev. B 65, 094111 (2002)

    Article  Google Scholar 

  25. S.F. Wang, Chin. Phys. 14, 2575 (2005)

    Article  ADS  Google Scholar 

  26. S.F. Wang, J. Phys. A: Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  27. X.Z. Wu, S.F. Wang, R.P. Liu, Acta Mech. Sin. 26, 425 (2010)

    Article  ADS  Google Scholar 

  28. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

  29. O.N. Mryasov, Y.N. Gornostyrev, A.J. Freeman, Phys. Rev. B 58, 11927 (1998)

    Article  ADS  Google Scholar 

  30. J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003)

    Article  MATH  Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1996)

    Article  ADS  Google Scholar 

  36. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  37. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  38. N.A.W. Holzwarth et al., Phys. Rev. B 13, 5188 (1997)

    Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Jeanloz, T. Ahrens, H.K. Mao, P.M. Bell, Science 206, 829 (1979)

    Article  ADS  Google Scholar 

  41. J.F. Mammone, H.K. Mao, P.M. Bell, Geophys. Res. Lett. 8, 140 (1981)

    Article  ADS  Google Scholar 

  42. Y. Fei, Am. Mineral. 84, 272 (1999)

    Google Scholar 

  43. P. Pichet, H.K. Mao, P.M. Bell, J. Geophys. Res. 93, 15279 (1988)

    Article  ADS  Google Scholar 

  44. C.S. Zha, H.K. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. USA 97, 13494 (2000)

    Article  ADS  Google Scholar 

  45. S.V. Sinogeikin, J.D. Bass, Phys. Rev. B 59, 14141 (1999)

    Article  ADS  Google Scholar 

  46. N.I. Medvedeva et al., Phys. Rev. B 54, 13506 (1996)

    Article  ADS  Google Scholar 

  47. J. Hartford et al., Phys. Rev. B 48, 3115 (1998)

    Google Scholar 

  48. C.R. Miranda, S. Scandolo, Comput. Phys. Commun. 169, 24 (2005)

    Article  ADS  Google Scholar 

  49. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992)

    Article  ADS  Google Scholar 

  50. D.B. Zhang, T.C. Wang, Y.G. Wei, in 2nd International Conference on Heterogeneous Mater. Mech. (2008), p. 21

  51. Y. Zhang, Y.G. Yao, Eur. Phys. J. B 55, 355 (2007)

    Article  ADS  Google Scholar 

  52. R.E. Peierls, Proc. Phys. Soc. 52, 23 (1940)

    Article  Google Scholar 

  53. S.F. Wang, J. Phys. A: Math. Theor. 41, 015005 (2008)

    Article  Google Scholar 

  54. A.J. Foreman, M.A. Jaswon, J.K. Wood, Proc. Phys. Soc. A 64, 156 (1951)

    Article  ADS  Google Scholar 

  55. C.W. Zhao, Y.M. Xing, P.C. Bai, Chin. Phys. B 18, 2464 (2009)

    Article  ADS  Google Scholar 

  56. Y.X. Gan, B.Z. Jang, J. Mater. Sci. Lett. 15, 2044 (1996)

    Google Scholar 

  57. Y. Shen et al., Scripta Mater. 61, 457 (2009)

    Article  Google Scholar 

  58. X.Z. Wu et al., Cent. Eur. J. Phys. 9, 1095 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wu, X.Z., Wang, R. et al. High-pressure effect on elastic constants, stacking fault energy and correlation with dislocation properties in MgO and CaO. Eur. Phys. J. B 85, 226 (2012). https://doi.org/10.1140/epjb/e2012-30032-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30032-4

Keywords

Navigation