Skip to main content

Identifying overlapping communities in social networks using multi-scale local information expansion

Abstract

Most existing approaches for community detection require complete information of the graph in a specific scale, which is impractical for many social networks. We propose a novel algorithm that does not embrace the universal approach but instead of trying to focus on local social ties and modeling multi-scales of social interactions occurring in those networks. Our method for the first time optimizes the topological entropy of a network and uncovers communities through a novel dynamic system converging to a local minimum by simply updating the membership vector with very low computational complexity. It naturally supports overlapping communities through associating each node with a membership vector which describes node’s involvement in each community. Furthermore, different multi-scale partitions can be obtained by tuning the characteristic size of modules from the optimal partition. Because of the high efficiency and accuracy of the algorithm, it is feasible to be used for the accurate detection of community structures in real networks.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.L. Barabási, R. Albert, Science 286, 509 (1999)

    MathSciNet  Article  Google Scholar 

  2. 2.

    R. Albert, A.L. Barabási, H. Jeong, Nature 401, 130 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    X.G. Li, Z.Y. Gao, K.P. Li, X.M. Zhao, Phys. Rev. E 76, 016110 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    A. Sumiyoshi, S. Norikazu, Phys. Rev. E 74, 026113 (2006)

    Article  Google Scholar 

  6. 6.

    M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    M.E.J. Newman, Proc. Natl. Acad. Sci. 103, 8577 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    L. Danon, J. Duch, D. Guilera, A. Arenas, J. Stat. Mech. 29, P09008 (2005)

    Article  Google Scholar 

  10. 10.

    X.S. Zhang, R.S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, L. Chen, Europhys. Lett. 87, 38002 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  13. 13.

    Z.P. Li, S.H. Zhang, R.S. Wang, X.S. Zhang, L. Chen, Phys. Rev. E 77, 036109 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    T. Evans, R. Lambiotte, Eur. Phys. J. B 77, 265 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 876 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  16. 16.

    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Nature 435, 814 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    H.J. Li, Y. Wang, L.Y. Wu, Z.P. Liu, L. Chen, X.S. Zhang, Europhys. Lett. 97, 48005 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    J.S. Baras, P. Hovareshti, Proceedings of 47th IEEE Conference on Decision and Control (2008), pp. 2973–2978

  19. 19.

    D. Gfeller, J.C. Chappelier, P. De Los Rios, Phys. Rev. E 72, 056135 (2005)

    ADS  Article  Google Scholar 

  20. 20.

    G. Bianconi, P. Pin, M. Marsili, Proc. Natl. Acad. Sci. 106, 11433 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    E. Ravasz, A.L. Barabási, Phys. Rev. E 67, 026112 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    D.B. Chen, M.S. Shang, Y. Fu, Physica A 389, 4177 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    M.S. Shang, D.B. Chen, T. Zhou, Chin. Phys. Lett. 27, 058901 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    A. Lancichinetti, S. Fortunato, Phys. Rev. E 80, 016118 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    W.W. Zachary, J. Anthropol. Res. 33, 452 (1977)

    Google Scholar 

  26. 26.

    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. 99, 7821 (2002)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  27. 27.

    G. Palla, A.L. Barabási, T. Vicsek, Nature 446, 664 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. 10, P10008 (2005)

    Google Scholar 

  29. 29.

    M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. 105, 1118 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    A. Lancichinetti, S. Fortunato, Phys. Rev. E 80, 056117 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    M.E.J. Newman, Eur. Phys. J. B 38, 321 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    J. Zhang, S. Zhang, X.S. Zhang, Physica A 387, 1675 (2008)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to L. Chen or X. S. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, H.J., Zhang, J., Liu, Z.P. et al. Identifying overlapping communities in social networks using multi-scale local information expansion. Eur. Phys. J. B 85, 190 (2012). https://doi.org/10.1140/epjb/e2012-30015-5

Download citation

Keywords

  • Statistical and Nonlinear Physics