Skip to main content

Advertisement

Log in

The dynamics of financial stability in complex networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We address the problem of banking system resilience by applying off-equilibrium statistical physics to a system of particles, representing the economic agents, modelled according to the theoretical foundation of the current banking regulation, the so called Merton-Vasicek model. Economic agents are attracted to each other to exchange ‘economic energy’, forming a network of trades. When the capital level of one economic agent drops below a minimum, the economic agent becomes insolvent. The insolvency of one single economic agent affects the economic energy of all its neighbours which thus become susceptible to insolvency, being able to trigger a chain of insolvencies (avalanche). We show that the distribution of avalanche sizes follows a power-law whose exponent depends on the minimum capital level. Furthermore, we present evidence that under an increase in the minimum capital level, large crashes will be avoided only if one assumes that agents will accept a drop in business levels, while keeping their trading attitudes and policies unchanged. The alternative assumption, that agents will try to restore their business levels, may lead to the unexpected consequence that large crises occur with higher probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basel Committee on Banking Supervision,International convergence of capital measurement and capital standards (1998),http://bis.org/publ/bcbs04a.htm

  2. Basel Committee on Banking Supervision,Basel ii: International convergence of capital measurement and capital standards: a revised framework (2004),http://bis.org/publ/bcbs107.htm

  3. O. Vasicek,Probability of loss on loan portfolio(KMV Corporation, 1987), http://www.kmv.com

  4. R. Frey, A. McNeil, J. Bank. Financ. 26, 1317 (2002)

    Article  Google Scholar 

  5. Basel Committee on Banking Supervision,International regulatory framework for banks (basel iii) (2010), http://www.bis.org/bcbs/basel3.htm

  6. J. Daníelsson, P. Embrechts, C. Goodhart, C. Keating, F. Muennich, O. Renault, H. Song Shin, An academic response to basel ii (2001), www.bis.org/bcbs/ca/fmg.pdf

  7. L. Borland, J.P. Bouchaud, J.F. Muzy, G. Zumbach,The dynamics of financial markets – mandelbrot’s multifractal cascades, and beyond(Wilmott Magazine, 2005)

  8. J.P. Bouchaud, M. Potters,Theory of Financial Risk and Derivative Pricing From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, 2003)

  9. B. Mandelbrot, R. Hudson,The (mis)Behavior of Markets – A Fractal View of Risk, Ruin, and Reward(Basic Books, USA, 2004)

  10. D. Sornette,Why Stock Markets Crash?(Princeton University Press, 2003)

  11. P. Embrechts, C. Kluppelberg, T. Mikosch,Modelling Extreme Events in Insurance and Finance(Springer-Verlag, 1997)

  12. R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73, 2946 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381, 767 (1996)

    Article  ADS  Google Scholar 

  14. E. Samanidou, E. Zschischang, D. Stauffer, T. Lux.Rep. Prog. Phys 70, 409 (2007)

    Article  ADS  Google Scholar 

  15. R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995)

    Article  ADS  Google Scholar 

  16. T. Wenzel,Beyond GDP: Measuring the Wealth of Nations (GRIN, 2009)

  17. R. Lipsey, P. Steyner,Economics(Harper & Row, USA, 1981)

  18. J.P. da Cruz, P.G. Lind, Physica A 391, 1445 (2012)

    ADS  Google Scholar 

  19. S.N.D. Queirós, E.M.F. Curado, F.D. Nobre, Physica A 374, 715 (2007)

    Article  ADS  Google Scholar 

  20. V. Plerou, P. Gopikrishnan, X. Gabaix, H.E. Stanley, Phys. Rev. E 66, 027104 (2002)

    ADS  Google Scholar 

  21. S.A. Ross, R.W. Westerfield, J.F. Jaffe, Corporate Finance, 6th edn. (McGrawHill, 2003)

  22. IFRS Foundation,International financial reporting standards (2011),http://www.ifrs.org/IFRSs/IFRS.htm

  23. R.C. Merton, J. Financ. 29, 449 (1974)

    Google Scholar 

  24. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.-B. Hu, W.-X. Wang, R. Jiang, Q.-S. Wu, B.-H. Wang, Y.-H. Wu, Eur. Phys. J. B 53, 273 (2006)

    Article  ADS  MATH  Google Scholar 

  26. V. Pareto, Le Cours d’Economique Politique (Macmillan, Lausanne, Paris, 1897)

  27. J.P. da Cruz, P.G. Lind, Bounding heavy-tailed return distributions to measure model risk (2011), http://arxiv.org/abs/1109.2803

  28. M. Defond, C. Lennox, The effect of sox on small auditor exits and audit quality, in Singapore Management University (SMU) Accounting Symposium

  29. P. Erdös, A. Rényi, Publ. Math. (Debrecen) 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  30. R. Piazza, Growth and crisis, unavoidable connection? (2010), www.imf.org

  31. A.G. Haldane, R.M. May, Nature 469, 351 (2011)

    Article  ADS  Google Scholar 

  32. G. Iori, S. Jafarey, F. Padilla, J. Econ. Behav. Organ. 61, 525 (2006)

    Article  Google Scholar 

  33. European Commission, IMF, ECB, Portugal: Memorandum of understanding (mou) on specific economic policy conditionality (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. da Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cruz, J.P., Lind, P.G. The dynamics of financial stability in complex networks. Eur. Phys. J. B 85, 256 (2012). https://doi.org/10.1140/epjb/e2012-20984-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20984-6

Keywords

Navigation