Skip to main content

Advertisement

Log in

Segmentation of time series with long-range fractal correlations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G  +  C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Berkes, L. Horvath, P. Kokoszka, Q.M. Shao, Ann. Stat. 34, 1140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. B.J. West, M.F. Shlesinger, Int. J. Mod. Phys. B 3, 795 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  3. Theory and Applications of Long-Range Dependence, edited by P. Doukhan, G. Oppenheim, M.S. Taqqu (Birkhäuser, Boston, 2002)

  4. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, H.E. Stanley, Europhys. Lett. 43, 363 (1998)

    Article  ADS  Google Scholar 

  5. Change-point Problems. Lecture notes and Monograph series, edited by E. Carlstein, H.G. Muller, D. Siegmund (Institute of Mathematical Statistics, Hayward, CA, 1994), Vol. 23

  6. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

  7. T. Schreiber, Phys. Rev. Lett. 78, 843 (1997)

    Article  ADS  Google Scholar 

  8. A. Witt, J. Kurths, A. Pikovsky, Phys. Rev. E 58, 1800 (1998)

    Article  ADS  Google Scholar 

  9. G. Mayer-Kress, Integr. Physiol. Behav. Sci. 29, 205 (1994)

    Article  Google Scholar 

  10. R. Hegger, H. Kantz, L. Matassini, Phys. Rev. Lett. 84, 3197 (2000)

    Article  ADS  Google Scholar 

  11. M.M. Wolf et al., Med. J. Aust. 2, 52 (1978)

    Google Scholar 

  12. C. Guilleminault et al., Lancet 1, 126 (1984)

    Article  Google Scholar 

  13. P.Ch. Ivanov et al., Nature 383, 323 (1996)

    Article  ADS  Google Scholar 

  14. P. Bernaola-Galván, P.Ch. Ivanov, L.A.N. Amaral, H.E. Stanley, Phys. Rev. Lett. 87, 168105 (2001)

    Article  ADS  Google Scholar 

  15. P.Ch. Ivanov et al., Europhys. Lett. 48, 594 (1999)

    Article  ADS  Google Scholar 

  16. J.W. Kantelhardt et al., Phys. Rev. E 65, 051908 (2002)

    Article  ADS  Google Scholar 

  17. R. Karasik et al., Phys. Rev. E 66, 062902 (2002)

    Article  ADS  Google Scholar 

  18. P.Ch. Ivanov, Z. Chen, K. Hu, H.E. Stanley, Physica A 344, 685 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. P.Ch. Ivanov et al., Proc. Natl. Acad. Sci. USA 104, 20702 (2007)

    Article  ADS  Google Scholar 

  20. D.T. Schmitt, P.K. Stein, P.Ch. Ivanov, IEEE Trans. Biomed. Eng. 56, 1564 (2009)

    Article  Google Scholar 

  21. P.Ch. Ivanov, IEEE Eng. Med. Biol. Mag. 26, 33 (2007)

    Article  Google Scholar 

  22. M. Gardiner-Garden, M. Frommer, J. Mol. Biol. 196, 261 (1987)

    Article  Google Scholar 

  23. P.L. Luque-Escamilla et al., Phys. Rev. E 71, 061925 (2005)

    Article  ADS  Google Scholar 

  24. M. Hackenberg et al., BMC Bioinformatics 7, 446 (2006)

    Article  Google Scholar 

  25. M. Ortuño et al., Europhys. Lett. 57, 759 (2002)

    Article  ADS  Google Scholar 

  26. P. Carpena et al., Phys. Rev. E 79, 035102 (2009)

    Article  ADS  Google Scholar 

  27. J.C. Wong, H. Lian, S.A. Cheong, Phys. A 388, 4635 (2009)

    Article  Google Scholar 

  28. K. Fukuda et al., Europhys. Lett. 62, 189 (2003)

    Article  ADS  Google Scholar 

  29. L. Horváth, J. Multivar. Anal. 78, 218 (2001)

    Article  MATH  Google Scholar 

  30. S. Ben Hariz, J.J. Wylie, C. R. Math. 341, 765 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. L.H. Wang, J. Stat. Comput. Simul. 78, 653 (2007)

    Article  Google Scholar 

  32. L. Horváth, P. Kokoszka, J. Stat. Plann. Inference 64, 57 (1997)

    Article  MATH  Google Scholar 

  33. C. Inclán, C. Tiao, J. Am. Stat. Assoc. 89, 913 (1994)

    MATH  Google Scholar 

  34. B. Whitcher, P. Guttorp, D.B. Percival, J. Stat. Comput. Simul. 68, 65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Whitcher, S.D. Byers, P. Guttorp, D.B. Percival, Water Resour. Res. 38, 1054 (2002)

    Article  ADS  Google Scholar 

  36. E. Andreou, E. Ghysels, J. Appl. Econ. 17, 579 (2002)

    Article  Google Scholar 

  37. J. Beran, N. Terrin, Biometrika 83, 627 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. L.H. Wang, J.D. Wang, J. Stat. Comput. Simul. 76, 317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Carpena, P. Bernaola-Galván, Phys. Rev. B 60, 201 (1999)

    Article  ADS  Google Scholar 

  40. I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J.L. Oliver, H.E. Stanley, Phys. Rev. E 65, 041905 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  41. G.L. Feng, Z.Q. Gong, W.J. Dong, J.P. Li, Acta Physica Sinica 54, 5494 (2005)

    Google Scholar 

  42. G.L. Feng, Z.Q. Gong, R. Zhi, D.Q. Zhang, Chin. Phys. B 17, 2745 (2008)

    Article  ADS  Google Scholar 

  43. J.L. Oliver et al., Gene 276, 47 (2001)

    Article  Google Scholar 

  44. J.L. Oliver et al., Gene 300, 117 (2002)

    Article  Google Scholar 

  45. W. Li, P. Bernaola-Galván, P. Carpena, J.L. Oliver. Comput. Biol. Chem. 27, 5 (2003)

    Article  Google Scholar 

  46. J.L. Oliver et al., Nucleic Acids Res. 32, W287 (2004)

    Article  Google Scholar 

  47. V. Thakur, R.K. Azad, R. Ramaswamy, Phys. Rev. E 75, 011915 (2007)

    Article  ADS  Google Scholar 

  48. B. Toth, F. Lillo, J.D. Farmer, Eur. Phys. J. B 78, 235 (2010)

    Article  ADS  Google Scholar 

  49. J. Beran, Statistics for long memory processes (Chapman & Wall, 1994)

  50. S.B. Lowen, M.C. Teich, Fractal-Based Point Processes (Wiley Interscience, 2005), Chap. 6

  51. K. Fukuda, H.E. Stanley, L.A.N. Amaral, Phys. Rev. E 69, 021108 (2004)

    Article  ADS  Google Scholar 

  52. W. Wyss, Found. Phys. Lett. 4, 235 (1991)

    Article  MathSciNet  Google Scholar 

  53. J.R.M. Hosking, Biometrika 68, 165 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5445 (1996)

    Article  ADS  Google Scholar 

  55. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)

    Article  ADS  Google Scholar 

  56. K. Hu et al., Phys. Rev. E 64, 011114 (2001)

    Article  ADS  Google Scholar 

  57. Z. Chen et al., Phys. Rev. E 65, 041107 (2002)

    Article  ADS  Google Scholar 

  58. Q.D.Y. Ma et al., Phys. Rev. E 81, 031101 (2010)

    Article  ADS  Google Scholar 

  59. Z. Chen et al., Phys. Rev. E 71, 011104 (2005)

    Article  ADS  Google Scholar 

  60. Y. Xu et al., Physica A 390, 4057 (2011)

    Article  ADS  Google Scholar 

  61. L.M. Xu et al., Phys. Rev. E 71, 051101 (2005)

    Article  ADS  Google Scholar 

  62. P. Bernaola-Galván, R. Román-Roldán, J.L. Oliver, Phys. Rev. E 53, 5181 (1996)

    Article  ADS  Google Scholar 

  63. W.H. Press et al., Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, 1994)

  64. W. Li, Phys. Rev. Lett. 86, 5815 (2001)

    Article  ADS  Google Scholar 

  65. W. Li, Gene 276, 57 (2001)

    Article  Google Scholar 

  66. P. Carpena, J.L. Oliver, M. Hackenberg, A.V. Coronado, G. Barturen, P. Bernaola-Galván. Phys. Rev. E 83, 031908 (2011)

    ADS  Google Scholar 

  67. N. Haiminen, H. Manila, E. Terzi, BMC Bioinformatics 8, 171 (2007)

    Article  Google Scholar 

  68. R. Bellman, Coummun ACM 4, 284 (1961)

    Article  MATH  Google Scholar 

  69. W. Li, Complexity 3, 33 (1998)

    Article  MathSciNet  Google Scholar 

  70. R. Román-Roldán, P. Bernaola-Galván, J.L. Oliver, Phys. Rev. Lett. 80, 1344 (1998)

    Article  ADS  Google Scholar 

  71. P. Bernaola-Galván, R. Román-Roldán, J.L. Oliver, Phys. Rev. Lett. 83, 3336 (1999)

    Article  ADS  Google Scholar 

  72. P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J.L. Oliver, Gene 300, 105 (2002)

    Article  Google Scholar 

  73. P.J. Dandliker, R.E. Holmlin, J.K. Barton, Science 275, 1465 (1997)

    Article  Google Scholar 

  74. P. Carpena, P. Bernaola-Galván, P.Ch. Ivanov, H.E. Stanley, Nature 418, 955 (2002)

    Article  ADS  Google Scholar 

  75. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999)

    Article  Google Scholar 

  76. J.C. Venter et al., Science 291, 1304 (2001)

    Article  ADS  Google Scholar 

  77. N. Cohen, T. Dagan, L. Stone, D. Graur, Mol. Biol. Evol. 22, 1260 (2005)

    Article  Google Scholar 

  78. O. Clay, G. Bernardi, Mol. Biol. Evol. 22, 2315 (2005)

    Article  Google Scholar 

  79. P. Carpena, P. Bernaola-Galván, A.V. Coronado, M. Hackenberg, J.L. Oliver Phys. Rev. E 75, 032903 (2007)

    Article  ADS  Google Scholar 

  80. A. Arneodo, E. Bacry, P.V. Graves, J.F. Muzy, Phys. Rev. Lett. 74, 3293 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bernaola-Galván.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernaola-Galván, P., Oliver, J.L., Hackenberg, M. et al. Segmentation of time series with long-range fractal correlations. Eur. Phys. J. B 85, 211 (2012). https://doi.org/10.1140/epjb/e2012-20969-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20969-5

Keywords

Navigation