Skip to main content
Log in

Analytic equation of state and thermodynamic properties for solid FCC C60 over a wide range of pressures and temperatures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

As an analytic approximation to the free volume theory (FVT), the analytic mean field potential (AMFP) approach is applied to the multi-exponential model solid. The analytic expressions for the equation of state (EOS) and thermodynamic quantities are derived. The formalism for the case of the double-exponential (DE) model is applied to the solid fcc C60. The four potential parameters are determined by fitting the experimental data of cohesive energy, lattice constant and compression curve of solid C60. The numerical results calculated show that the Girifalco potential is too hard and gives compression curve prominently deviated from experiments at high pressure, whereas the DE potential can well describe the thermo-physical properties of C60 system within wide pressure range. The calculated variation of lattice constant versus temperature relationship and compression curve for solid C60 by using the DE potential agree well with experimental data available. Especially the AMFP with DE potential predicted that the fcc C60 solid is stable up to 2440 K, the spinodal temperature, in good agreement with the result from molecular dynamic (MD) simulation. The AMFP is a useful approach to consider the anharmonic effects at high temperature for solid C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Girifalco, J. Phys. Chem. 96, 858 (1992)

    Article  Google Scholar 

  2. Y. Takabayashi, A.Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, M.J. Rosseinsky, Science 323, 1585 (2009)

    Article  ADS  Google Scholar 

  3. M.G. Yao, V. Pischedda, A.S. Miguel, J. Phys.: Condens. Matter 23, 115701-7 (2011)

    ADS  Google Scholar 

  4. M.G. Yao, B. Sundqvist, T. Wågberg, Phys. Rev. B 79, 081403 (2009)

    Article  ADS  Google Scholar 

  5. M.G. Yao, V. Pischedda, B. Sundqvist, T. Wågberg, M. Mezouar, R. Debord, A.S. Miguel, Phys. Rev. B 84, 144106 (2011)

    Article  ADS  Google Scholar 

  6. V. Buntar, Phys. Lett. A 184, 131 (1993)

    Article  ADS  Google Scholar 

  7. A. Cheng, M.L. Klein, C. Caccamo, Phys. Rev. Lett. 71, 1200 (1993)

    Article  ADS  Google Scholar 

  8. M.C. Abramo, C. Caccamo, J. Phys. Chem. Solids 57, 1751 (1996)

    Article  ADS  Google Scholar 

  9. M.C. Abramo, C. Caccamo, D. Costa, G. Pellicane, R. Ruberto, Phys. Rev. E 69, 031112 (2004)

    Article  ADS  Google Scholar 

  10. L.A. Girifalco, Phys. Rev. B 52, 9910 (1995)

    Article  ADS  Google Scholar 

  11. V.I. Zubov, N.P. Tretiakov, J.F. Sanchez, A.A. Caparica, Phys. Rev. B 53, 12080 (1996)

    Article  ADS  Google Scholar 

  12. V.I. Zubov, J.F. Sanchez-Ortiz, N.P. Tretiakov, I.V. Zubov, Phys. Rev. B 55, 6747 (1997)

    Article  ADS  Google Scholar 

  13. R.C. Shukla, E.R. Cowley, Phys. Rev. B 31, 374 (1985)

    Article  ADS  Google Scholar 

  14. D.J. Lacks, R.C. Shukla, Phys. Rev. B 54, 3266 (1996)

    Article  ADS  Google Scholar 

  15. Y. Wang, D. Chen, X. Zhang, Phys. Rev. Lett. 84, 3220 (2000)

    Article  ADS  Google Scholar 

  16. Y. Wang, Phys. Rev. B 62, 196 (2000)

    Article  ADS  Google Scholar 

  17. Y. Wang, Phys. Rev. B 63, 245108 (2001)

    Article  ADS  Google Scholar 

  18. Y. Wang, R. Ahuja, B. Johansson, Phys. Rev. B 65, 014104 (2001)

    Article  ADS  Google Scholar 

  19. N.K. Bhatt, A.R. Jani, P.R. Vyas, V.B. Gohel, Physica B 357, 259 (2005)

    Article  ADS  Google Scholar 

  20. N.K. Bhatt, P.R. Vyas, A.R. Jani, V.B. Gohel, J. Phys. Chem. Solids 66, 797 (2005)

    Article  ADS  Google Scholar 

  21. J.X. Sun, L.C. Cai, Q. Wu, F.Q. Jing, Phys. Rev. B 71, 024107 (2005)

    Article  Google Scholar 

  22. E.R. Cowley, J. Gross, Z.X. Gong, G.K. Horton, Phys. Rev. B 42, 3135 (1990)

    Article  ADS  Google Scholar 

  23. E. Wasserman, L. Stixrude, Phys. Rev. B 53, 8296 (1996)

    Article  ADS  Google Scholar 

  24. W. Yang, J.X. Sun, F. Yu, Eur. Phys. J. B 71, 211 (2009)

    Article  ADS  Google Scholar 

  25. D. Ben-Amotz, A.D. Gift, R.D. Levine, J. Chem. Phys. 117, 4632 (2002)

    Article  ADS  Google Scholar 

  26. A.I. Karasevskii, W.B. Holzapfel, Phys. Rev. B 67, 224301 (2003)

    Article  ADS  Google Scholar 

  27. N.X. Chen, Z.D. Chen, Y.C. Wei, Phys. Rev. E 55, R5 (1997)

    Article  ADS  Google Scholar 

  28. T. Horikawa, T. Kinoshita, K. Suito, A. Onodera, Solid State Commun. 114, 121 (2000)

    Article  ADS  Google Scholar 

  29. S.J. Duclos, K. Brister, R.C. Haddon, A.R. Kortan, F.A. Theil, Nature 351, 380 (1991)

    Article  ADS  Google Scholar 

  30. A. Lundin, B. Sundqvist, P. Skoglund, A. Fransson, S. Pettersson, Solid State Commun. 84, 879 (1992)

    Article  ADS  Google Scholar 

  31. W. Yang, J.X. Sun, L.G. Wang, R.G. Tian, Mod. Phys. Lett. B 22, 515 (2008)

    Article  ADS  Google Scholar 

  32. W. Yang, J.X. Sun, F. Yu, Braz. J. Phys. 38, 564 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Cheng, H., Sun, J.X. et al. Analytic equation of state and thermodynamic properties for solid FCC C60 over a wide range of pressures and temperatures. Eur. Phys. J. B 85, 193 (2012). https://doi.org/10.1140/epjb/e2012-20908-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20908-6

Keywords

Navigation