Skip to main content
Log in

Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper a geometric phase is proposed to characterise the topological quantum phase transition of the Kitaev honeycomb model. The simultaneous rotation of two spins is crucial for generating the geometric phase for the multi-spin in a unit-cell unlike the one-spin case. It is found that the ground-state geometric phase, which is non-analytic at the critical points, possesses zigzagging behaviour in the gapless B phase of non-Abelian anyon excitations, but is a smooth function in the gapped A phase. Furthermore, the finite-size scaling behaviour of the non-analytic geometric phase along with its first- and second-order partial derivatives in the vicinity of critical points is shown to exhibit the universality. The divergent second-order derivative of the geometric phase in the thermodynamic limit indicates the typical second-order phase transition and thus the topological quantum phase transition can be well detected by the geometric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Berry, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  2. M.V. Berry, Phys. Today, 43, 34 (1990)

    Article  ADS  Google Scholar 

  3. Geometric Phases in Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989)

  4. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer, New York, 2003)

  5. A.C.M. Carollo, J.K. Pachos, Phys. Rev. Lett. 95, 157203 (2005)

    Article  ADS  Google Scholar 

  6. S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  7. A. Hamma, arXiv:quant-ph/0602091v1 (2006)

  8. S.-L. Zhu, Int. J. Mod. Phys. B 22, 561 (2008)

    Article  ADS  MATH  Google Scholar 

  9. G. Chen, J. Li, J.-Q. Liang, Phys. Rev. A 74, 054101 (2006)

    Article  ADS  Google Scholar 

  10. Y.-Q. Ma, S. Chen, Phys. Rev. A 79, 022116 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Hirano, H. Katsura, Y. Hatsugai, Phys. Rev. B 77, 094431 (2008)

    Article  ADS  Google Scholar 

  12. J. Richert, Phys. Lett. A 372, 5352 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A.I. Nesterov, S.G. Ovchinnikov, Phys. Rev. E 78, R015202 (2008)

    Article  ADS  Google Scholar 

  14. B. Basu, Phys. Lett. A 374, 1205 (2010)

    Article  ADS  MATH  Google Scholar 

  15. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)

  16. S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997)

    Article  ADS  Google Scholar 

  17. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  18. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  19. A. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. X.G. Wen, Phys. Rev. Lett. 90, 016803 (2003)

    Article  ADS  Google Scholar 

  21. J. Yu, S.P. Kou, X.G. Wen, Europhys. Lett. 84, 17004 (2008)

    Article  ADS  Google Scholar 

  22. A. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. X.G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, Oxford, 2004)

  24. X.Y. Feng, G.M. Zhang, T. Xiang, Phys. Rev. Lett. 98, 087204 (2007)

    Article  ADS  Google Scholar 

  25. H.C. Jiang, Z.Y. Weng, T. Xiang, Phys. Rev. Lett. 101, 090603 (2008)

    Article  ADS  Google Scholar 

  26. H.D. Chen, J.P. Hu, Phys. Rev. B 76, 193101 (2007)

    Article  ADS  Google Scholar 

  27. H.D. Chen, Z. Nussinov, J. Phys. A 41, 075001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Yang, S.J. Gu, C.P. Sun, H.Q. Lin, Phys. Rev. A 78, 012304 (2008)

    Article  ADS  Google Scholar 

  29. S.J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  MATH  Google Scholar 

  30. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MATH  Google Scholar 

  31. K.P. Schmidt, S. Dusuel, J. Vidal, Phys. Rev. Lett. 100, 057208 (2008)

    Article  ADS  Google Scholar 

  32. J. Vidal, K.P. Schmidt, S. Dusuel, Phys. Rev. B 78, 245121 (2008)

    Article  ADS  Google Scholar 

  33. G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B 80, 125415 (2009)

    Article  ADS  Google Scholar 

  34. J.-Q. Liang, H.J.W. Müller-Kirsten, Ann. Phys. 219, 42 (1992)

    Article  ADS  MATH  Google Scholar 

  35. M.N. Barber, in Phase Transition and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 145

  36. S.J. Gu, H.M. Kwok, W.Q. Ning, H.Q. Lin, Phys. Rev. B 77, 245109 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. -Q. Liang or G. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, J., Liang, J.Q. & Chen, G. Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points. Eur. Phys. J. B 85, 207 (2012). https://doi.org/10.1140/epjb/e2012-20901-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20901-1

Keywords

Navigation