Skip to main content
Log in

Time series irreversibility: a visibility graph approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a method to measure real-valued time series irreversibility which combines two different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the inand outdegree distributions of the associated graph. The method is computationally efficient and does not require any ad hoc symbolization process. We find that the method correctly distinguishes between reversible and irreversible stationary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identify the irreversible nature of the series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Weiss, J. Appl. Prob. 12, 831 (1975)

    Article  MATH  Google Scholar 

  2. R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007)

    Article  ADS  Google Scholar 

  3. J.M.R. Parrondo, C. Van den Broeck, R. Kawai, New. J. Phys. 11, 073008 (2009)

    Article  ADS  Google Scholar 

  4. E. Roldan, J.M.R. Parrondo, Phys. Rev. Lett. 105, 15 (2010)

    Article  Google Scholar 

  5. E. Roldan, J.M.R. Parrondo, Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems, http://arxiv.org/abs/1201.5613

  6. A.C. Yang, S.S. Hseu, H.W. Yien, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 90, 10 (2003)

    Google Scholar 

  7. M. Costa, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 95, 198102 (2005)

    Article  ADS  Google Scholar 

  8. M.D. Costa, C.K. Peng, A.L. Goldberger, Cardiovasc. Eng. 8, (2008)

  9. C.S. Daw, C.E.A. Finney, M.B. Kennel, Phys. Rev. E 62, 2 (2000)

    Article  Google Scholar 

  10. M.B. Kennel, Phys. Rev. E 69, 056208 (2004)

    Article  ADS  Google Scholar 

  11. C. Diks, J.C. van Houwelingen, F. Takens, J. DeGoede, Phys. Lett. A 201, 221 (1995)

    Article  ADS  Google Scholar 

  12. P. Gaspard, J. Stat. Phys. 117, (2004)

  13. C. Cammarota, E. Rogora, Chaos Solitons Fractals 32, 1649 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, A. Petrosyan, Phys. Rev. Lett. 98, 150601 (2007)

    Article  ADS  Google Scholar 

  15. Q. Wang, S.R. Kulkarni, S. Verdú, IEEE Transactions on Information Theory 51, 9 (2005)

    Google Scholar 

  16. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New Jersey, 2006)

  17. B. Luque, L. Lacasa, J. Luque, F. Ballesteros, Phys. Rev. E 80, 046103 (2009)

    Article  ADS  Google Scholar 

  18. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuno, Proc. Natl. Acad. Sci. USA 105, 4973 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Lacasa, B. Luque, J. Luque, J.C. Nuno, Europhys. Lett. 86, 30001 (2009)

    Article  ADS  Google Scholar 

  20. L. Lacasa, R. Toral, Phys. Rev. E 82, 036120 (2010)

    Article  ADS  Google Scholar 

  21. B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, PLoS One 6, 9 (2011)

    Google Scholar 

  22. J.B. Elsner, T.H. Jagger, E.A. Fogarty, Geophys. Res. Lett. 36, 16 (2009)

    Article  Google Scholar 

  23. C. Liu, W.-X. Zhou, W.-K. Yuan, Physica A 389, 13 (2010)

    Google Scholar 

  24. Y. Yang, J. Wang, H. Yang, J. Mang, Physica A 388, 4431 (2009)

    Article  ADS  Google Scholar 

  25. G. Gutin, T. Mansour, S. Severini, Physica A 390, 12 (2011)

    Article  MathSciNet  Google Scholar 

  26. M.E.J. Newmann, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Gaspard, Physica A 369, 1 (2006)

    Article  MathSciNet  Google Scholar 

  28. A. Porporato, J.R. Rigby, E. Daly, Phys. Rev. Lett. 98, 9 (2007)

    Article  Google Scholar 

  29. J.C. Sprott, G. Rowlands, Int. J. Bifurc. Chaos 11, 1865 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. E.J. Kostelich, T. Schreiber, Phys. Rev. E 48, 1752 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  31. M.J. Hinich, P. Rothman, Macroecon. Dyn. 2, 1 (1998)

    Google Scholar 

  32. Y.T. Chen, R.Y. Chou, C.M. Kuan, J. Econom. 95, 199 (2000)

    Article  MATH  Google Scholar 

  33. H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lacasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacasa, L., Nuñez, A., Roldán, É. et al. Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 217 (2012). https://doi.org/10.1140/epjb/e2012-20809-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20809-8

Keywords

Navigation