Advertisement

Time series irreversibility: a visibility graph approach

  • L. Lacasa
  • A. Nuñez
  • É. Roldán
  • J. M. R. Parrondo
  • B. Luque
Regular Article

Abstract

We propose a method to measure real-valued time series irreversibility which combines two different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the inand outdegree distributions of the associated graph. The method is computationally efficient and does not require any ad hoc symbolization process. We find that the method correctly distinguishes between reversible and irreversible stationary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identify the irreversible nature of the series.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    G. Weiss, J. Appl. Prob. 12, 831 (1975)zbMATHCrossRefGoogle Scholar
  2. 2.
    R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.M.R. Parrondo, C. Van den Broeck, R. Kawai, New. J. Phys. 11, 073008 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    E. Roldan, J.M.R. Parrondo, Phys. Rev. Lett. 105, 15 (2010)CrossRefGoogle Scholar
  5. 5.
    E. Roldan, J.M.R. Parrondo, Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems, http://arxiv.org/abs/1201.5613
  6. 6.
    A.C. Yang, S.S. Hseu, H.W. Yien, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 90, 10 (2003)Google Scholar
  7. 7.
    M. Costa, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 95, 198102 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M.D. Costa, C.K. Peng, A.L. Goldberger, Cardiovasc. Eng. 8, (2008)Google Scholar
  9. 9.
    C.S. Daw, C.E.A. Finney, M.B. Kennel, Phys. Rev. E 62, 2 (2000)CrossRefGoogle Scholar
  10. 10.
    M.B. Kennel, Phys. Rev. E 69, 056208 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C. Diks, J.C. van Houwelingen, F. Takens, J. DeGoede, Phys. Lett. A 201, 221 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    P. Gaspard, J. Stat. Phys. 117, (2004)Google Scholar
  13. 13.
    C. Cammarota, E. Rogora, Chaos Solitons Fractals 32, 1649 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, A. Petrosyan, Phys. Rev. Lett. 98, 150601 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Wang, S.R. Kulkarni, S. Verdú, IEEE Transactions on Information Theory 51, 9 (2005)Google Scholar
  16. 16.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New Jersey, 2006)Google Scholar
  17. 17.
    B. Luque, L. Lacasa, J. Luque, F. Ballesteros, Phys. Rev. E 80, 046103 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuno, Proc. Natl. Acad. Sci. USA 105, 4973 (2008)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    L. Lacasa, B. Luque, J. Luque, J.C. Nuno, Europhys. Lett. 86, 30001 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    L. Lacasa, R. Toral, Phys. Rev. E 82, 036120 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, PLoS One 6, 9 (2011)Google Scholar
  22. 22.
    J.B. Elsner, T.H. Jagger, E.A. Fogarty, Geophys. Res. Lett. 36, 16 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Liu, W.-X. Zhou, W.-K. Yuan, Physica A 389, 13 (2010)Google Scholar
  24. 24.
    Y. Yang, J. Wang, H. Yang, J. Mang, Physica A 388, 4431 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    G. Gutin, T. Mansour, S. Severini, Physica A 390, 12 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.E.J. Newmann, SIAM Rev. 45, 167 (2003)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P. Gaspard, Physica A 369, 1 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Porporato, J.R. Rigby, E. Daly, Phys. Rev. Lett. 98, 9 (2007)CrossRefGoogle Scholar
  29. 29.
    J.C. Sprott, G. Rowlands, Int. J. Bifurc. Chaos 11, 1865 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    E.J. Kostelich, T. Schreiber, Phys. Rev. E 48, 1752 (1993)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M.J. Hinich, P. Rothman, Macroecon. Dyn. 2, 1 (1998)Google Scholar
  32. 32.
    Y.T. Chen, R.Y. Chou, C.M. Kuan, J. Econom. 95, 199 (2000)zbMATHCrossRefGoogle Scholar
  33. 33.
    H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Lacasa
    • 1
  • A. Nuñez
    • 1
  • É. Roldán
    • 2
  • J. M. R. Parrondo
    • 2
  • B. Luque
    • 1
  1. 1.Departamento de Matemática Aplicada y Estadística, ETSI AeronáuticosUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Física Atómica, Molecular y Nuclear and GISCUniversidad Complutense de MadridMadridSpain

Personalised recommendations