A new deterministic model for chaotic reversals

Abstract

We present a new chaotic system of three coupled ordinary differential equations, limited to quadratic nonlinear terms. A wide variety of dynamical regimes are reported. For some parameters, chaotic reversals of the amplitudes are produced by crisis-induced intermittency, following a mechanism different from what is generally observed in similar deterministic models. Despite its simplicity, this system therefore generates a rich dynamics, able to model more complex physical systems. In particular, a comparison with reversals of the magnetic field of the Earth shows a surprisingly good agreement, and highlights the relevance of deterministic chaos to describe geomagnetic field dynamics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, Berlin, 1990)

  2. 2.

    E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, Cambridge, UK, 1993)

  3. 3.

    J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences (Springer, New York, 1982)

  4. 4.

    E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20, 130 (1963)

    ADS  Google Scholar 

  5. 5.

    O.E. Rossler, Phys. Rev. Lett. A 57, 397 (1976)

    ADS  Google Scholar 

  6. 6.

    T. Rikitake, Math. Proc. Camb. Philos. Soc. 54, 89 (1958)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. 7.

    J.C. Sprott, Phys. Rev. E 50, 647 (1994)

    MathSciNet  ADS  Article  Google Scholar 

  8. 8.

    C. Gissinger, E. Dormy, S. Fauve, Europhys. Lett. 90, 49001 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    P. Nozière, Phys. Earth Planet. Inter. 17, 55 (1978)

    ADS  Article  Google Scholar 

  10. 10.

    D. Hughes, M.R.E. Proctor, Nonlinearity 3, 127 (1990)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. 11.

    P. Smith, Explaining Chaos (Cambridge University Press, Cambridge, UK, 1998)

  12. 12.

    C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 48, 1507 (1982)

    MathSciNet  ADS  Article  Google Scholar 

  13. 13.

    C. Grebogi, E. Ott, F. Romeira, J.A. Yorke, Phys. Rev. A 36, 5365 (1987)

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    I. Melbourne, M.R.E. Proctor, A.M. Rucklidge, Dynamo and Dynamics, a Mathematical Challenge, edited by P. Chossat, D. Armbruster, I. Oprea (Kluwer, Dordrecht, 2001), pp. 363–370

  15. 15.

    P. Hoyng, M.A.J.H. Ossendrijver, D. Schmidt, Geophys. Astrophys. Fluid Dyn. 94, 263 (2001)

    ADS  Article  Google Scholar 

  16. 16.

    F. Petrelis, S. Fauve, E. Dormy, J.P. Valet, Phys. Rev. Lett. 102, 144503 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    J.P. Valet, L. Meynadier, Y. Guyodo, Nature 435, 802 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    P.L. McFadden et al., J. Geophys. Res. 96, 3923 (1991)

    ADS  Article  Google Scholar 

  19. 19.

    G. Glatzmaier, P. Roberts, Phys. Earth Planet. Inter. 91, 63 (1995)

    Article  Google Scholar 

  20. 20.

    F. Petrelis, S. Fauve, J. Phys.: Condens. Matter 20, 494203 (2008)

    Article  Google Scholar 

  21. 21.

    R. Monchaux et al., Phys. Rev. Lett. 98, 044502 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    M. Berhanu et al., Europhys. Lett. 77, 59001 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    C. Gissinger, Ph.D. thesis, Pierre and Marie Curie University, 2010

  24. 24.

    M. Kono, Geoph. Res. Lett. 14, 21 (1987)

    ADS  Article  Google Scholar 

  25. 25.

    V. Carbone et al., Phys. Rev. Lett. 96, 128501 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    S.C. Cande, D.V. Kent, J. Geophys. Res. 100, 6093 (1995)

    ADS  Article  Google Scholar 

  27. 27.

    V. Courtillot, P. Olson, Earth Planet. Sci. Lett. 260, 495 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    G. Glatzmaier et al., Nature 401, 885 (1999)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Gissinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gissinger, C. A new deterministic model for chaotic reversals. Eur. Phys. J. B 85, 137 (2012). https://doi.org/10.1140/epjb/e2012-20799-5

Download citation

Keywords

  • Statistical and Nonlinear Physics