Skip to main content
Log in

Stationary soliton solutions for large adiabatic Holstein polaron in magnetic field in anisotropic solids

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Large adiabatic polarons in anisotropic crystals in the presence of constant magnetic field have been studied within the Holstein molecular crystal model in the continuum approximation. It was shown that magnetic field directed along the symmetry axis induces transverse confinement which may stabilize large polarons. They represent localized (soliton-like) nonlinear structure uniformly propagating along the symmetry axis and rotating around it in the same time. Such objects exist in 3D lattice provided that coupling constant and magnetic field do not exceed certain critical values. In contrast with pure 1D systems existence of large polarons is possible in a quite wider region of the values of coupling constant which may attain considerably higher values than in the pure 1D media. Furthermore, polaron effective mass, depending on the intensity of the applied magnetic field, may be considerably lighter than that of the the pure 1D polarons for the same values of coupling constant. This is the most significant difference with respect to pure 1D systems in the absence of magnetic field and may have substantial impact on polaron transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948)

    Google Scholar 

  2. N.N. Bogolubov, Ukr. Matem. Zh. 2, 3 (1950)

    Google Scholar 

  3. N.N. Bogolubov, S.V. Tyablikov, Zh. Eksp. Teor. Fiz. 19, 256 (1949)

    Google Scholar 

  4. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  5. S.I. Pekar, Research on Electron Theory in Crystals (Gostekhteorizdat, Moscow, 1951)

  6. E.I. Rashba, in Excitons, edited by E.I. Rashba, M.D. Sturge (North-Holland, Amsterdam, 1982), p. ;543

  7. E.I. Rashba, Opt. Spektr. 2, 88 (1958)

    Google Scholar 

  8. T. Holstein, Ann. Phys. 8, 326 (1959)

    ADS  Google Scholar 

  9. T. Holstein, Ann. Phys. 8, 343 (1959)

    Article  ADS  Google Scholar 

  10. J.T. Devreese, Encyclopedia of Applied Physics, edited by G.L. Trigg (VCH, Weinheim, 1996), Vol. 14, p. 383

  11. J.T. Devreese, Rep. Prog. Phys. 72, 066501 (2009)

    Article  ADS  Google Scholar 

  12. D. Emin, T. Holstein, Phys. Rev. Lett. 36, 323 (1976)

    Article  ADS  Google Scholar 

  13. E. Young, P.B. Shaw, G. Whitfield, Phys. Rev. B 19, 1225 (1979)

    Article  ADS  Google Scholar 

  14. P.B. Shaw, E.W. Young, Phys. Rev. B 24, 714 (1981)

    Article  ADS  Google Scholar 

  15. E.G. Wilson, J. Phys. C Solid State Phys. 16, 1039 (1983)

    Article  ADS  Google Scholar 

  16. A.S. Davydov, Phys. Scr. 20, 387 (1979)

    Article  ADS  MATH  Google Scholar 

  17. A.S. Davydov, N.I. Kislukha, Phys. Stat. Sol. B 59, 465 (1973)

    Article  ADS  Google Scholar 

  18. D.K. Campbell, A.R. Bishop, K. Fesser, Phys. Rev. B 26, 6862 (1982)

    Article  ADS  Google Scholar 

  19. A.H. Castro Neto, A.O. Caldeira, Phys. Rev. B 46, 8858 (1992)

    Article  ADS  Google Scholar 

  20. A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 59, 13728 (1998)

    Article  ADS  Google Scholar 

  21. A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 60, 4618 (1999)

    Article  ADS  Google Scholar 

  22. A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 60, 14080 (1999)

    Article  ADS  Google Scholar 

  23. J. Bonča, S.A. Trugman, I. Batistić, Phys. Rev. B 60, 1633 (1999)

    Article  ADS  Google Scholar 

  24. Li-Chung Ku, S.A. Trugman, J. Bonča, Phys. Rev. B 65, 174306 (2002)

    Article  ADS  Google Scholar 

  25. J.E. Hirsch, R.L. Sugar, D.J. Scalapino, R. Blankenbecler, Phys. Rev. B 26, 5033 (1982)

    Article  ADS  Google Scholar 

  26. O.S. Barišić, S. Barišić, Eur. Phys. J. B 64, 1 (2008)

    Article  ADS  Google Scholar 

  27. O.S. Barišić, Europhys. Lett. 77, 57004 (2007)

    Article  ADS  Google Scholar 

  28. A. Alvermann, H. Fehske, S.A. Trugman, Phys. Rev. B 78, 165106 (2008)

    Article  ADS  Google Scholar 

  29. A. Alvermann, H. Fehske, S.A. Trugman, Phys. Rev. B 81, 165113 (2010)

    Article  ADS  Google Scholar 

  30. P. Hamm, G.P. Tsironis, Phys. Rev. B 78, 092301 (2008)

    Article  ADS  Google Scholar 

  31. D. Hennig, Phys. Rev. B 65, 174302 (2002)

    Article  ADS  Google Scholar 

  32. E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad. Sci. USA 97, 4556 (2000)

    Article  ADS  Google Scholar 

  33. E.M. Conwell, Proc. Natl. Acad. Sci. USA 102, 8795 (2005)

    Article  ADS  Google Scholar 

  34. V.D. Lakhno, N.S. Fialko, Eur. Phys. J. B 43, 279 (2005)

    Article  ADS  Google Scholar 

  35. A.J. Heeger, S. Kivelson, J.R. Schriefer, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  36. S.A. Brazovskii, JETP Lett. 28, 606 (1978)

    ADS  Google Scholar 

  37. B. Pertzch, U. Rössler, Solid State Commun. 37, 931 (1981)

    Article  ADS  Google Scholar 

  38. D. Emin, Phys. Rev. B 33, 3973 (1986)

    Article  ADS  Google Scholar 

  39. D. Ljuić, Z. Ivić, Phys. Rev. B 76, 052302 (2007)

    Article  ADS  Google Scholar 

  40. M.J. Rice, Phys. Rev. Lett. 37, 36 (1976)

    Article  ADS  Google Scholar 

  41. M.J. Rice, N.O. Lipari, Phys. Rev. Lett. 38, 437 (1977)

    Article  ADS  Google Scholar 

  42. M.J. Rice, N.O. Lipari, S. Strässler, Phys. Rev. Lett. 39, 1359 (1977)

    Article  ADS  Google Scholar 

  43. M. Porsch, Phys. Status Solidi 41, 151 (1970)

    Article  MathSciNet  Google Scholar 

  44. G. Whitfield, R. Parker, M. Rona, Phys. Rev. B 13, 2132 (1976)

    Article  ADS  Google Scholar 

  45. D.M. Larsen, Phys. Rev. 135, A419 (1964)

    Article  ADS  Google Scholar 

  46. D.M. Larsen, Phys. Rev. B 32, 2657 (1985)

    Article  ADS  Google Scholar 

  47. D.M. Larsen, Phys. Rev. B 33, 799 (1986)

    Article  ADS  Google Scholar 

  48. H. Kato, F.M. Peeters, Phys. Rev. 59, 14342 (1999)

    Article  Google Scholar 

  49. V.N. Gladilin, A.A. Klyukanov, Russian Phys. J. 26, 543 (1983)

    Google Scholar 

  50. L.S. Kukushkin, Pisma Zh. Eksp. Teor. Fiz. 7, 251 (1968)

    Google Scholar 

  51. L.S. Brizhik, Theor. Math. Phys. 83, 578 (1990)

    Article  MathSciNet  Google Scholar 

  52. L. Friedman, Phys. Rev. 131, 2445 (1963)

    Article  ADS  Google Scholar 

  53. T. Holstein, L. Friedman, Phys. Rev. 165, 1019 (1963)

    Article  ADS  Google Scholar 

  54. D. Emin, Phys. Rev. Lett. 28, 604 (1972)

    Article  ADS  Google Scholar 

  55. Y. Toyozawa, Progr. Theor. Phys. 26, 29 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. M. Hohenadler, W. von ;der Linden, in Polarons in Advanced Materials, edited by A.S. Alexandrov (Springer Series in Materials Science, 2007), Vol. ;103, pp. ;463-502

  57. I.V. Simenog, Theor. Math. Phys. 30, 263 (1977)

    Article  MathSciNet  Google Scholar 

  58. A.G. Litvak, A.M. Sergeev, JETP Lett. 27, 517 (1978)

    ADS  Google Scholar 

  59. M.G. Vakhitov, A.A. Kolokolov, Izv. Vyssh. Uch. Zav. Radiofizika 16, 1020 (1973) [English Transl. Radiophys. Quant. Electron 16, 783 (1973)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ivić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pržulj, Ž., Ivić, Z., Kapor, D. et al. Stationary soliton solutions for large adiabatic Holstein polaron in magnetic field in anisotropic solids. Eur. Phys. J. B 85, 95 (2012). https://doi.org/10.1140/epjb/e2012-20782-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20782-2

Keywords

Navigation