Theory and methods for rare events

Colloquium

Abstract

This paper reviews the transition path theory (TPT) for activated events and summarizes a set of methods and algorithms to compute all relevant quantities of this theory: free energy, rate and mechanism of the event. We provide a set of examples to illustrate the applicability of the methods to problems in chemistry, biophysics and material science.

Keywords

Computational Methods 

References

  1. 1.
    D. Shaw et al., Anton Special-Purpose Machine for Molecular Dynamics Simulation, in Communications of the ACM (2008), Vol. 51, pp. 91–97Google Scholar
  2. 2.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    M. Sorensen, A. Voter, J. Chem. Phys. 112, 9599 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    L. Rosso, P. Minary, Z. Zhu, M. Tuckerman, J. Chem. Phys. 116, 4389 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    L. Rosso, M. Tuckerman, Mol. Simul. 28, 91 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Grubmüller, Phys. Rev. E 52, 2893 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    L. Maragliano, E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    G. Ciccotti, S. Meloni, Phys. Chem. Chem. Phys. 13, 5952 (2011) CrossRefGoogle Scholar
  9. 9.
    L. Maragliano, E. Vanden-Eijnden, J. Chem. Phys. 128, 184110 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    M. Monteferrante, S. Bonella, S. Meloni, G. Ciccotti, Mol. Simul. 35, 1116 (2009) MATHCrossRefGoogle Scholar
  11. 11.
    H. Jónsson, G. Mills, K. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, 1998) Google Scholar
  12. 12.
    C. Dellago, P. Bolhuis, F. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    B. Ensing, A. Laio, M. Parrinello, M. Klein, J. Phys. Chem. B 109, 6676 (2005) CrossRefGoogle Scholar
  14. 14.
    L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Faradjian, R. Elber, J. Chem. Phys. 120, 10880 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    R. Allen, D. Frenkel, P. ten Wolde, J. Chem. Phys. 124, 024102 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    D. Chandler, J. Chem. Phys. 68, 2959 (1978) ADSCrossRefGoogle Scholar
  18. 18.
    E. Vanden-Eijnden, F. Tal, J. Chem. Phys. 123, 184103 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, R. Elber, J. Chem. Phys. 129, 174102 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    A. Laio, A. Rodriguez-Fortea, F. Gervasio, M. Ceccarelli, M. Parrinello, J. Phys. Chem. B 109, 6714 (2005) CrossRefGoogle Scholar
  21. 21.
    R. Durrett, Stochastic Calculus, A Practical Introduction (CRC, 1996), Vol. 96Google Scholar
  22. 22.
    E. Vanden-Eijnden, in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder (Springer, Heidelberg, 2006), Vol. 2, p. 439Google Scholar
  23. 23.
    W. E, E. Vanden-Eijnden, J. Statist. Phys. 123, 503 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    D. Chandler, in Classical and Quantum Dynamics in Condensed Phase Simulations – Proceedings of the International School of Physics, edited by B. Berne, G. Ciccotti, D. Cocker (World Scientific Publishing Co. Pte. Ltd., Singapore, 1998), pp. 3–23Google Scholar
  25. 25.
    M. Tuckerman, Statistical Mechanics: Theory and Practice Through Molecular Simulation (Oxford University Press, 2010) Google Scholar
  26. 26.
    D. Rebertus, B. Berne, D. Chandler, J. Chem. Phys. 70, 3395 (1979) ADSCrossRefGoogle Scholar
  27. 27.
    J. VandeVondele, U. Rothlisberger, J. Phys. Chem. B 106, 203 (2002) CrossRefGoogle Scholar
  28. 28.
    G. Martyna, M. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    E. Vanden-Eijnden, Commun. Math. Sci. 1, 385 (2003)MathSciNetMATHGoogle Scholar
  30. 30.
    G.C. Papanicolaou, Introduction to the Asymptotics Analysis of Stochastic Equations (1976)Google Scholar
  31. 31.
    A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures (North-Holland, New York, 1978)Google Scholar
  32. 32.
    P.N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining (Addison-Wesley, 2006)Google Scholar
  33. 33.
    J. Macqueen, Some methods for classification and analysis of the multivariate observations, in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (University of California Press), Vol. 233, pp. 281–297Google Scholar
  34. 34.
    M. Ankerst, M.M. Breunig, H.P. Kriegel, J. Sander, Optics: Ordering Points To Identify the Clustering Structure, in ACM SIGMOD international conference on Management of data (ACM Press, 1999), pp. 49–60 Google Scholar
  35. 35.
    M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), edited by E. Simoudis, J. Han, U.M. Fayyad (AAAI Press, 1996), pp. 226–231Google Scholar
  36. 36.
    D. Moroni, P. ten Wolde, P. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    P. Metzner, C. Schutte, E. Vanden-Eijnden, J. Chem. Phys. 125, 84110 (2006) CrossRefGoogle Scholar
  38. 38.
    B. Oksendal, Stochastic Differential Equations (Springer-Verlag, New York, Berlin, 1984)Google Scholar
  39. 39.
    J.P. Ryckaert, G. Ciccotti, H. Berendsen, J. Comput. Phys. 23, 327 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    E. Vanden-Eijnden, M. Venturoli, J. Chem. Phys. 130, 194101 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    E. Vanden-Eijnden, M. Venturoli, J. Chem. Phys. 131, 044120 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    E. Carter, G. Ciccotti, J. Hynes, R. Kapral, Chem. Phys. Lett. 156, 472 (1989) ADSCrossRefGoogle Scholar
  43. 43.
    B. Bogdanovi, M. Schwickardi, J. Alloys Compd. 1, 253 (1997)Google Scholar
  44. 44.
    X. Ke, I. Tanaka, Phys. Rev. B 71, 024117 (2005) ADSCrossRefGoogle Scholar
  45. 45.
    C. Araujo, S. Li, R. Ahuja, P. Jena, Phys. Rev. B 72, 165101 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    M. Monteferrante, S. Bonella, S. Meloni, E. Vanden-Eijnden, G. Ciccotti, Sci. Model. Simul. 15, 187 (2009)CrossRefGoogle Scholar
  47. 47.
    M. Sprik, Chem. Phys. 258, 139 (2000) ADSCrossRefGoogle Scholar
  48. 48.
    M. Monteferrante, S. Bonella, G. Ciccotti, Phys. Chem. Chem. Phys. PCCP 13, 13177 (2011) Google Scholar
  49. 49.
    J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davies, D. Phillips, V. Shore, Nature 185, 422 (1960) ADSCrossRefGoogle Scholar
  50. 50.
    L. Maragliano, G. Cottone, G. Ciccotti, E. Vanden-Eijnden, J. Am. Chem. Soc. 132, 1010 (2010) CrossRefGoogle Scholar
  51. 51.
    O. Palumbo, R. Cantelli, A. Paolone, C. Jensen, S. Srinivasan, J. Phys. Chem. B 109, 1168 (2005) CrossRefGoogle Scholar
  52. 52.
    J. Voss, Q. Shi, H. Jacobsen, M. Zamponi, K. Lefmann, T. Vegge, J. Phys. Chem. B 111, 3886 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dipartimento di Fisica and CNISMUniversità La SapienzaRomeItaly
  2. 2.School of Physics, Room 302 EMSC-UCDUniversity College Dublin4 DublinIreland
  3. 3.CASPUR, Consorzio per le Applicazioni del Supercalcolo Per Università e RicercaRomaItaly
  4. 4.School of Physics, Room 302B EMSC-UCDUniversity College Dublin4 DublinIreland

Personalised recommendations