Skip to main content
Log in

Role of diffusion in an epidemic model of mobile individuals on networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, the study of epidemic spreading of mobile individuals on networks focuses on the system in which each node of the network may be occupied by either one individual or a void, and each individual could move to a neighbour void node. It is found that for the susceptible-infected-susceptible (SIS) model, the diffusion increases the epidemic threshold for arbitrary heterogeneous networks having the degree fluctuations, and the diffusion doesn’t affect the epidemic threshold for regular random networks. In the SI model, the diffusion suppresses the epidemic spread at the early outbreak stage, which indicates that the growth time scale of outbreaks is monotonically increasing with diffusion rate d. The heterogeneous mean-field analysis is in good agreement with the numerical simulations on annealed networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  2. R. Pastor-Satorras, A. Vespignani, in Handbook of Graph and Networks, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, Berlin, 2003)

  3. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  4. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  5. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 63, 066117 (2001)

    Article  ADS  Google Scholar 

  6. M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 92, 178701 (2004)

    Article  ADS  Google Scholar 

  8. V. Colizza, A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007)

    Article  ADS  Google Scholar 

  9. V. Colizza, A. Vespignani, J. Theor. Biol. 251, 450 (2008)

    Article  Google Scholar 

  10. D. Balcan, A. Vespignani, Nat. Phys. 7, 581 (2011)

    Article  Google Scholar 

  11. D. Balcan, A. Vespignani, J. Theor. Biol. 293, 87 (2012)

    Article  Google Scholar 

  12. V. Belik, T. Geisel, D. Brockmann, Phys. Rev. X 1, 011001 (2011)

    Article  Google Scholar 

  13. V. Belik, T. Geisel, D. Brockmann, Eur. Phys. J. B 84, 579 (2011)

    Article  ADS  Google Scholar 

  14. A. Vespignani, Nat. Phys. 8, 32 (2012)

    Article  Google Scholar 

  15. A. Vespignani, Eur. Phys. J. B 64, 349 (2008)

    Article  ADS  MATH  Google Scholar 

  16. M. Tang, L. Liu, Z. Liu, Phys. Rev. E 79, 016108 (2009)

    Article  ADS  Google Scholar 

  17. N. Masuda, New J. Phys. 12, 093009 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Boccara, K. Cheong, J. Phys. A 25, 2447(1992)

    Article  ADS  MATH  Google Scholar 

  19. N. Boccara, K. Cheong, J. Phys. A 26, 3707 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. D.-M. Zhang et al., Phys. Scr. 73, 73 (2006)

    Article  ADS  Google Scholar 

  21. O. Miramontes, B. Luque, Physica D 168-169, 379 (2002)

    Article  ADS  Google Scholar 

  22. Z. Liu, Phys. Rev. E 81, 016110 (2010)

    Article  ADS  Google Scholar 

  23. S. Kwon, Y. Kim, Phys. Rev. E 84, 041103 (2011)

    Article  ADS  Google Scholar 

  24. A.-C. Wu, Chin. Phys. Lett. 28, 118902 (2011)

    Article  ADS  Google Scholar 

  25. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

    Article  ADS  Google Scholar 

  26. A. Barrat, M. Barthélemy, A. Vespignani, Phys. Rev. Lett. 92, 228701 (2004)

    Article  ADS  Google Scholar 

  27. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991)

  28. S. Weber, M. Porto, Phys. Rev. E 76, 046111 (2007)

    Article  ADS  Google Scholar 

  29. M. Boguañ´, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Baronchelli, R. Pastor-Satorras, Phys. Rev. E 82, 011111 (2010)

    Article  ADS  Google Scholar 

  31. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 056104 (2005)

    Article  ADS  Google Scholar 

  32. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2008)

    Article  ADS  Google Scholar 

  33. B. Guerra, J. Gómez-Gardeñes, Phys. Rev. E 82, 035101(R) (2010)

    Article  ADS  Google Scholar 

  34. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)

    Article  ADS  Google Scholar 

  35. S. Chatterjee, R. Durrett, Ann. Probab. 37, 2332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 105, 218701 (2010)

    Article  ADS  Google Scholar 

  37. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, A.C., Wang, Y.H. Role of diffusion in an epidemic model of mobile individuals on networks. Eur. Phys. J. B 85, 280 (2012). https://doi.org/10.1140/epjb/e2012-20244-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20244-y

Keywords

Navigation