Skip to main content
Log in

Continuous-distribution puddle model for conduction in trilayer graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The temperature dependence of the resistance in trilayer graphene is observed under different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs, characteristic of a semimetal. At large gate voltages excitation of electron-hole pairs is suppressed, and the resistance increases with increasing temperature because of the enhanced electron-phonon scattering, characteristic of a metal. We find that the simple model with overlapping conduction and valence bands, each with quadratic dispersion relations, is unsatisfactory. Instead, we conclude that impurities in the substrate that create local puddles of higher electron or hole densities are responsible for the residual conductivity at low temperatures. The best fit is obtained using a continuous distribution of puddles. From the fit the average of the electron and hole effective masses can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Dirsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  4. S. Das Sarma, Shaffique Adam, E.H. Hwang, Enrico Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  5. M.F. Craciun, S. Russo, M. Yamamoto, J.B. Osstinga, A.F. Morpurgo, S. Tarucha, Nature Nanotech. 4, 383 (2009)

    Article  ADS  Google Scholar 

  6. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nature Phys. 4, 144 (2008)

    Article  ADS  Google Scholar 

  7. Y. Zhang, Victor W. Brar, Caglar Girit, Alex Zettl, M.F. Crommie, Nature Phys. 5, 722 (2009)

    Article  ADS  Google Scholar 

  8. A. Deshpande, W. Bao, F. Miao, C.N. Lau, B.J. LeRoy, Phys. Rev. B 79, 205411 (2009)

    Article  ADS  Google Scholar 

  9. A. Deshpande, W. Bao, Z. Zhao, C.N. Lau, B.J. LeRoy, Appl. Phys. Lett. 95, 243502 (2009)

    Article  ADS  Google Scholar 

  10. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007)

    Article  ADS  Google Scholar 

  11. E.H. Hwang, S. Das Sarma, Phys. Rev. B 82, 081409 (2010)

    Article  ADS  Google Scholar 

  12. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007)

    Article  ADS  Google Scholar 

  13. L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, M.C. Martin, Phys. Rev. B 78, 235408 (2008)

    Article  ADS  Google Scholar 

  14. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  15. A. Grüneis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito, T. Pichler, A. Rubio, Phys. Rev. B 78, 205425 (2008)

    Article  ADS  Google Scholar 

  16. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Phys, Rev. Lett. 98, 206802 (2007)

    Article  ADS  Google Scholar 

  17. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys, Rev. Lett. 97, 266801 (2006)

    Article  ADS  Google Scholar 

  18. L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Phys. Rev. B 76, 201401 (2007)

    Article  ADS  Google Scholar 

  19. C.A. Klein, J. Appl. Phys. 35, 2947 (1964)

    Article  ADS  Google Scholar 

  20. J.W. McClure, Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  21. A.A. Avetisyan, B. Bartoens, R.M. Peeters, Phys. Rev. B 79, 035421 (2009)

    Article  ADS  Google Scholar 

  22. E. McCann, Phys. Rev. B 74, 161403 (2006)

    Article  ADS  Google Scholar 

  23. M. Koshino, E. McCann, Phys. Rev. B 79, 125443 (2009)

    Article  ADS  Google Scholar 

  24. M. Koshino, Phys. Rev. B 81, 125304 (2010)

    Article  ADS  Google Scholar 

  25. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  26. Wenjuan Zhu, Vasili Perebeinos, Marcus Freitag, Phaedon Avouris, Phys. Rev. B 80 235402 (2009)

    Article  ADS  Google Scholar 

  27. Wenjuan Zhu, Debroah Neumayer, Vasili Perebeinos, Phaedon Avouris, Nano Lett. 10, 3572 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.S., Chang, Y.C. & Lu, J.G. Continuous-distribution puddle model for conduction in trilayer graphene. Eur. Phys. J. B 85, 13 (2012). https://doi.org/10.1140/epjb/e2011-20716-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20716-6

Keywords

Navigation