Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes

Abstract

When network and graph theory are used in the study of complex systems, a typically finite set of nodes of the network under consideration is frequently either explicitly or implicitly considered representative of a much larger finite or infinite region or set of objects of interest. The selection procedure, e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants of various commonly used statistical network measures. The practical relevance and applicability of our approach is demonstrated for a number of example networks from different fields of research, and is shown to be of fundamental importance in particular in the study of spatially embedded functional networks derived from time series as studied in, e.g., neuroscience and climatology.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2.

    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  3. 3.

    L. da F Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)

  5. 5.

    R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010)

  6. 6.

    E. Kolaczyk, Statistical Analysis of Network Data: Methods and Models, Springer Series in Statistics (Springer, 2009)

  7. 7.

    S. Achard, R. Salvador, B. Whitcher, J. Suckling, E. Bullmore, J. Neurosci. 26, 63 (2006)

    Article  Google Scholar 

  8. 8.

    C. Zhou, L. Zemanová, G. Zamora, C. Hilgetag, J. Kurths, Phys. Rev. Lett. 97, 238103 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C.J. Honey, V.J. Wedeen, O. Sporns, PLOS Biol. 6, e159 (2008)

    Article  Google Scholar 

  10. 10.

    A.A. Tsonis, P.J. Roebber, Physica A 333, 497 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Europhys. Lett. 87, 48007 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Topology, hierarchy, and correlations in Internet graphs, In Complex Networks, edited by E. Ben-Naim and Z. Toroczkai (2004), Vol. 650, pp. 425–440.

  14. 14.

    Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, W. Willinger, The origin of power-laws in internet topologies revisited, in IEEE INFOCOM (2002), Vol. 2, pp. 608–617

  15. 15.

    G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, IEEE/ACM Trans. Netw. 11, 514 (2003)

    Article  Google Scholar 

  16. 16.

    A. Capocci, V. Servedio, F. Colaiori, L. Buriol, D. Donato, S. Leonardi, G. Caldarelli, Phys. Rev. E 74, 036116 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    V. Zlatić, H. Štefančić, Europhys. Lett. 93, 58005 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    M. Comola, M. Fafchamps, CEPR Discussion Papers 7406, C.E.P.R. Discussion Papers, 2009

  19. 19.

    M. Comola, M. Fafchamps, CSAE Working Paper Series 2010-20, Paris-Jourdan Sciences Économiques, 2010

  20. 20.

    M.A. Serrano, M. Boguñá, Phys. Rev. E 68, 015101 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Phys. Lett. A 373, 4246 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, New. J. Phys. 12, 033025 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Phys. Rev. E 81, 015101 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    A. Barrat, M. Barthelemy, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

    ADS  Article  Google Scholar 

  26. 26.

    A.A. Tsonis, K.L. Swanson, P.J. Roebber, B. Am. Meteorol. Soc. 87, 585 (2006)

    Article  Google Scholar 

  27. 27.

    A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008)

    ADS  Article  Google Scholar 

  28. 28.

    K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    A. Gozolchiani, K. Yamasaki, O. Gazit, S. Havlin, Europhys. Lett. 83, 28005 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    R.V. Donner, T. Sakamoto, N. Tanizuka, in Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics, edited by R.V. Donner, S.M. Barbosa (Springer, 2008), pp. 125–154

  31. 31.

    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Top. 174, 157 (2009)

    ADS  Article  Google Scholar 

  32. 32.

    J.A. Henderson, P.A. Robinson, Phys. Rev. Lett. 107, 018102 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    J.F. Donges, H.C.H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. Phys. J. B 84, 635 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    G.R. North, T.L. Bell, R.F. Cahalan, Mon. Weather Rev. 110, 699 (1982)

    ADS  Article  Google Scholar 

  35. 35.

    S.H. Lee, P.J. Kim, H. Jeong, Phys. Rev. E 73, 016102 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    R. Rohde, J. Curry, D. Groom, R. Jacobsen, R.A. Muller, S. Perlmutter, A. Rosenfeld, C. Wickham, J. Wurtele, Under Review (2011), pp. 1–39

  37. 37.

    T. Plewa, T.J. Linde, V.G. Weirs, in Adaptive mesh refinement, theory and applications, Lecture notes in computational science and engineering (Springer, 2005), Vol. 41

  38. 38.

    C. Dangalchev, Physica A 365, 556 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    K.A. Stephenson, M. Zelen, Soc. Networks 11, 1 (1989)

    MathSciNet  Article  Google Scholar 

  40. 40.

    V. Latora, M. Marchiori, Physica A 314, 109 (2002)

    ADS  MATH  Article  Google Scholar 

  41. 41.

    M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)

    ADS  Article  Google Scholar 

  42. 42.

    A. Arenas, A. Cabrales, A. Díaz-Guilera, R. Guimerà, F. Vega-Redondo, in Statistical Mechanics of Complex Networks, Lecture Notes in Physics, edited by R. Pastor-Satorras, M. Rubi, A. Díaz-Guilera (Springer Berlin, Heidelberg, 2003), Vol. 625, pp. 175–194

  43. 43.

    M.E.J. Newman, Soc. Networks 27, 39 (2005)

    ADS  Article  Google Scholar 

  44. 44.

    S. Bialonski, M.T. Horstmann, K. Lehnertz, Chaos 20, 013134 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  45. 45.

    J. Barcelo, Comput. Netw. 45, 333 (2004)

    MATH  Article  Google Scholar 

  46. 46.

    D. Gfeller, P. De Los Rios, Phys. Rev. Lett. 100, 174104 (2008)

    ADS  Article  Google Scholar 

  47. 47.

    M. Fiedler, Czech. Math. J. 23, 298 (1973)

    MathSciNet  Google Scholar 

  48. 48.

    R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)

    ADS  Article  Google Scholar 

  49. 49.

    G. Csárdi, T. Nepusz, Inter Journal Complex Systems CX. 18, 1695 (2006), http://igraph.sf.net

    Google Scholar 

  50. 50.

    S.N. Soffer, A. Vázquez, Phys. Rev. E 71, 057101 (2005)

    ADS  Article  Google Scholar 

  51. 51.

    P. Bonacich, Am. J. Sociol. 92, 1170 (1987)

    Article  Google Scholar 

  52. 52.

    J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Zou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heitzig, J., Donges, J.F., Zou, Y. et al. Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes. Eur. Phys. J. B 85, 38 (2012). https://doi.org/10.1140/epjb/e2011-20678-7

Download citation

Keywords

  • Interdisciplinary Physics