Skip to main content
Log in

Horizontal rolls in convective flow above a partially heated surface

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Horizontal rolls, generated in convective flow above a partially heated bottom in a rectangular box are studied experimentally for a wide range of the Prandtl number (7 ≤ P r ≤ 1020), the Rayleigh number (300 ≤ R a ≤ 2.8 × 107) and the aspect ratio (0.08 ≤ a ≤ 0.7). Experimental studies are supported by direct numerical simulations, which made possible the examination of the regimes inaccessible in the experiment, and also to investigate in detail the heat transfer in the convective flow. A variety of regimes with longitudinal helical rolls, with transverse rolls and with mixed structures has been observed. The structure of secondary flows is defined by the level of convective supercriticality in the boundary layer (Rayleigh number) and the intensity of the throughflow, defined by the Reynolds number, which depends itself on the heating and size, i.e. on the Rayleigh number. Most of the studied regimes were characterized by the appearance of longitudinal rolls. The transverse rolls appear in the flow only under the conditions of the large vertical drop in the temperature and weak large-scale flow (that is possible only at large values of the Prandtl number). Both longitudinal and transverse rolls lead to remarkable heat transfer enhancement. The formation and characteristics of horizontal rolls are described in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Hart, J. Atmos. Sci. 29, 687 (1972)

    Article  ADS  Google Scholar 

  2. G.Z. Gershuni, E.M. Zhukhovitskii, V.M. Myznikov, J. Appl. Mech. Tech. Phys. 15, 78 (1974)

    Article  ADS  Google Scholar 

  3. E.M. Sparrow, R.B. Husar, J. Fluid Mech. 37, 251 (1969)

    Article  ADS  Google Scholar 

  4. H. Shaukatullah, B. Gebhart, Int. J. Heat Mass Transfer 21, 1481 (1978)

    Article  Google Scholar 

  5. P. Jeschke, H. Beer, J. Fluid Mech. 432, 313 (2001)

    ADS  MATH  Google Scholar 

  6. W.K.S. Chiu, C.J. Richards, Y. Jaluria, Phys. Fluids 12, 2128 (2000)

    Article  ADS  Google Scholar 

  7. A. Benderradji, A. Haddad, R. Taher, M. Médale, C. Abid, F. Papini, Heat and Mass Transfer 44, 1465 (2008)

    Article  ADS  Google Scholar 

  8. T.F. Lin, Int. J. Heat Fluid Flow 24, 299 (2003)

    Article  Google Scholar 

  9. E. Schroder, K. Buhler, Int. J. Heat Mass Transfer 38, 1249 (1995)

    Article  Google Scholar 

  10. X. Nicolas, A. Mojtabi, J.K. Platten, Phys. Fluids 9, 337 (1997)

    Article  ADS  Google Scholar 

  11. J.M. Luijkx, J.K. Platten, J. Non-equilib. Thermodyn. 6, 141 (1981)

    ADS  MATH  Google Scholar 

  12. J.M. Luijkx, J.K. Platten, C.L. Legros, Int. J. Heat Mass Transfer 24, 1287 (1981)

    Article  Google Scholar 

  13. J.R. Maughan, F.P. Incropera, Exp. Fluids 5, 334 (1987)

    Article  Google Scholar 

  14. D. Etling, R.A. Brown, Boundary-Layer Meteor. 65, 215 (1993)

    Article  ADS  Google Scholar 

  15. J. Wurman, J. Winslow, Science 280, 555 (1998)

    Article  ADS  Google Scholar 

  16. I. Morrison, S. Businger, F. Marks, P. Dodge, J.A. Businger, J. Atmos. Sci. 62, 2662 (2005)

    Article  ADS  Google Scholar 

  17. J.A. Zhang, K.B. Katsaros, P.G. Black, S. Lehner, J.R. French, W.M. Drennan, Boundary-Layer Meteor. 128, 173 (2008)

    Article  ADS  Google Scholar 

  18. R.C. Foster, J. Atmos. Sci. 62, 2647 (2005)

    Article  ADS  Google Scholar 

  19. I. Ginis, A.P. Khain, E. Morozovsky, J. Atmos. Sci. 61, 3049 (2004)

    Article  ADS  Google Scholar 

  20. G.O. Hughes, R.W. Griffiths, Annu. Rev. Fluid Mech. 40, 185 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. G.P. Bogatyrev, Sov. J. Exp. Theor. Phys. Lett. 51, 630 (1990)

    ADS  Google Scholar 

  22. V.G. Batalov, A.N. Sukhanovskii, P.G. Frik, Fluid Dyn. 42, 540 (2007)

    Article  ADS  MATH  Google Scholar 

  23. J.C. Mullarney, R.W. Griffiths, G.O. Hughes, J. Fluid Mech. 516, 181 (2004)

    Article  ADS  MATH  Google Scholar 

  24. G.Z. Gershuni, E.M. Zhukhovitskii, A.A. Nepomniashchii, (Moscow Izdatel Nauka, 1989)

  25. M.C. Kim, J.S. Baik, I.G. Hwang, D.Y. Yoon, C.K. Choi, Chem. Eng. Sci. 54, 619 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sukhanovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanovsky, A., Batalov, V., Teymurazov, A. et al. Horizontal rolls in convective flow above a partially heated surface. Eur. Phys. J. B 85, 9 (2012). https://doi.org/10.1140/epjb/e2011-20420-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20420-7

Keywords

Navigation