Horizontal rolls in convective flow above a partially heated surface

  • A. Sukhanovsky
  • V. Batalov
  • A. Teymurazov
  • P. Frick
Regular Article

Abstract

Horizontal rolls, generated in convective flow above a partially heated bottom in a rectangular box are studied experimentally for a wide range of the Prandtl number (7 ≤ Pr ≤ 1020), the Rayleigh number (300 ≤ Ra ≤ 2.8 × 107) and the aspect ratio (0.08 ≤ a ≤ 0.7). Experimental studies are supported by direct numerical simulations, which made possible the examination of the regimes inaccessible in the experiment, and also to investigate in detail the heat transfer in the convective flow. A variety of regimes with longitudinal helical rolls, with transverse rolls and with mixed structures has been observed. The structure of secondary flows is defined by the level of convective supercriticality in the boundary layer (Rayleigh number) and the intensity of the throughflow, defined by the Reynolds number, which depends itself on the heating and size, i.e. on the Rayleigh number. Most of the studied regimes were characterized by the appearance of longitudinal rolls. The transverse rolls appear in the flow only under the conditions of the large vertical drop in the temperature and weak large-scale flow (that is possible only at large values of the Prandtl number). Both longitudinal and transverse rolls lead to remarkable heat transfer enhancement. The formation and characteristics of horizontal rolls are described in details.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.E. Hart, J. Atmos. Sci. 29, 687 (1972) ADSCrossRefGoogle Scholar
  2. 2.
    G.Z. Gershuni, E.M. Zhukhovitskii, V.M. Myznikov, J. Appl. Mech. Tech. Phys. 15, 78 (1974) ADSCrossRefGoogle Scholar
  3. 3.
    E.M. Sparrow, R.B. Husar, J. Fluid Mech. 37, 251 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    H. Shaukatullah, B. Gebhart, Int. J. Heat Mass Transfer 21, 1481 (1978) CrossRefGoogle Scholar
  5. 5.
    P. Jeschke, H. Beer, J. Fluid Mech. 432, 313 (2001) ADSMATHGoogle Scholar
  6. 6.
    W.K.S. Chiu, C.J. Richards, Y. Jaluria, Phys. Fluids 12, 2128 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    A. Benderradji, A. Haddad, R. Taher, M. Médale, C. Abid, F. Papini, Heat and Mass Transfer 44, 1465 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    T.F. Lin, Int. J. Heat Fluid Flow 24, 299 (2003) CrossRefGoogle Scholar
  9. 9.
    E. Schroder, K. Buhler, Int. J. Heat Mass Transfer 38, 1249 (1995) CrossRefGoogle Scholar
  10. 10.
    X. Nicolas, A. Mojtabi, J.K. Platten, Phys. Fluids 9, 337 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Luijkx, J.K. Platten, J. Non-equilib. Thermodyn. 6, 141 (1981) ADSMATHGoogle Scholar
  12. 12.
    J.M. Luijkx, J.K. Platten, C.L. Legros, Int. J. Heat Mass Transfer 24, 1287 (1981) CrossRefGoogle Scholar
  13. 13.
    J.R. Maughan, F.P. Incropera, Exp. Fluids 5, 334 (1987) CrossRefGoogle Scholar
  14. 14.
    D. Etling, R.A. Brown, Boundary-Layer Meteor. 65, 215 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    J. Wurman, J. Winslow, Science 280, 555 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    I. Morrison, S. Businger, F. Marks, P. Dodge, J.A. Businger, J. Atmos. Sci. 62, 2662 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Zhang, K.B. Katsaros, P.G. Black, S. Lehner, J.R. French, W.M. Drennan, Boundary-Layer Meteor. 128, 173 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    R.C. Foster, J. Atmos. Sci. 62, 2647 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    I. Ginis, A.P. Khain, E. Morozovsky, J. Atmos. Sci. 61, 3049 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    G.O. Hughes, R.W. Griffiths, Annu. Rev. Fluid Mech. 40, 185 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    G.P. Bogatyrev, Sov. J. Exp. Theor. Phys. Lett. 51, 630 (1990) ADSGoogle Scholar
  22. 22.
    V.G. Batalov, A.N. Sukhanovskii, P.G. Frik, Fluid Dyn. 42, 540 (2007) ADSMATHCrossRefGoogle Scholar
  23. 23.
    J.C. Mullarney, R.W. Griffiths, G.O. Hughes, J. Fluid Mech. 516, 181 (2004) ADSMATHCrossRefGoogle Scholar
  24. 24.
    G.Z. Gershuni, E.M. Zhukhovitskii, A.A. Nepomniashchii, (Moscow Izdatel Nauka, 1989) Google Scholar
  25. 25.
    M.C. Kim, J.S. Baik, I.G. Hwang, D.Y. Yoon, C.K. Choi, Chem. Eng. Sci. 54, 619 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Sukhanovsky
    • 1
  • V. Batalov
    • 1
  • A. Teymurazov
    • 1
  • P. Frick
    • 1
  1. 1.Institute of Continuous Media MechanicsPermRussia

Personalised recommendations