Skip to main content
Log in

Exact steady states to a nonlinear surface growth model

  • Regular Article
  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on exact stationary solutions to a nonlinear evolution equation describing the collective step meander on a vicinal surface subject to the Bales-Zangwill growth instability [O. Pierre-Louis et al., Phys. Rev. Lett. 80, 4221 (1998)]. Firstly, attention is focused on periodic solutions (steady states) which admit vertical points (or diverging local slopes). Such solutions, which are determined by a theoretical analysis, reveal that the nonlinear evolution equation may admit a non stationary solution with spike singularities or/and caps (dead-core solution) at maxima or/and minima. In a second part, steady states are, mathematically, generalized to a family of evolution equations. Finally, the effect of smoothening by step-edge diffusion is also revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Misbah, O. Pierre-Louis, Y. Saito, Rev. Mod. Phys. 82, 981 (2010)

    Article  ADS  Google Scholar 

  2. M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  MATH  Google Scholar 

  3. A. Pimpinelli, J. Villain, Physique de la croissance cristalline (Eyrolles Alea Saclay, Paris, 1995)

  4. O. Pierre-Louis et al., J. Cryst. Grow. 275, 56 (2005)

    Article  ADS  Google Scholar 

  5. O. Pierre-Louis, C. Misbah, Phys. Rev. Lett. 76, 4761 (1996)

    Article  ADS  Google Scholar 

  6. O. Pierre-Louis, C. Misbah, Phys. Rev. B 58, 2259 (1998)

    Article  ADS  Google Scholar 

  7. O. Pierre-Louis, C. Misbah, Phys. Rev. B 58, 2276 (1998)

    Article  ADS  Google Scholar 

  8. O. Pierre-Louis et al., Phys. Rev. Lett. 80, 4221 (1998)

    Article  ADS  Google Scholar 

  9. F. Gillet, O. Pierre-Louis, C. Misbah, Eur. Phys. J. B 18, 519 (2000)

    Article  ADS  Google Scholar 

  10. M. Sato et al., Phys. Rev. B 65, 245427 (2002)

    Article  ADS  Google Scholar 

  11. R. Kato et al., Surf. Sci. 522, 64 (2003)

    Article  ADS  Google Scholar 

  12. M. Sato et al., Phys. Rev. B 67, 125408 (2003)

    Article  ADS  Google Scholar 

  13. J. Kallunki, J. Krug, Phys. Rev. E 62, 6229 (2000)

    Article  ADS  Google Scholar 

  14. J. Krug, Physica A 313, 47 (2002)

    Article  ADS  Google Scholar 

  15. S. Paulin et al., Phys. Rev. Lett. 86, 5538 (2001)

    Article  ADS  Google Scholar 

  16. P. Politi, J. Villain, Phys. Rev. B 54, 7 5114 (1996)

    Google Scholar 

  17. P. Politi et al., Phys. Rep. 324, 271 (2000)

    Article  ADS  Google Scholar 

  18. P. Politi, C. Misbah, Phys. Rev. Lett. 92, 090601 (2004)

    Article  ADS  Google Scholar 

  19. P. Politi, C. Misbah, Phys. Rev. E 73, 036133 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Frisch, A. Verga, Phys. Rev. Lett. 96, 166104 (2006)

    Article  ADS  Google Scholar 

  21. M. Guedda, H. Trojette, S. Peponas, M. Benlahsen, Phys. Rev. B 81, 195436 (2010)

    Article  ADS  Google Scholar 

  22. J.W. Bullard, E.J. Garboczi, Phys. Rev. E 97, 011604 (2009)

    Article  ADS  Google Scholar 

  23. A. Mazor, D.J. Srolovitz, P.S. Hagan, B.G. Bukiet, Phys. Rev. Lett. 60, 424 (1988)

    Article  ADS  Google Scholar 

  24. J. Erlebacher et al., J. Vac. Sci. Technol. A 18, 115 (2000)

    Article  ADS  Google Scholar 

  25. M. Raible, S.J. Linz, P. Hanggi, Eur. Phys. J. B 27, 435 (2002)

    Article  ADS  Google Scholar 

  26. L. Golubović, Phys. Rev. Lett. 78, 90 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guedda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedda, M., Benlahsen, M. & Misbah, C. Exact steady states to a nonlinear surface growth model. Eur. Phys. J. B 83, 29 (2011). https://doi.org/10.1140/epjb/e2011-20403-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20403-8

Keywords

Navigation