Klein tunneling in graphene: optics with massless electrons

Colloquium Colloquium

Abstract

This article provides a pedagogical review on Klein tunneling in graphene, i.e. the peculiar tunneling properties of two-dimensional massless Dirac electrons. We consider two simple situations in detail: a massless Dirac electron incident either on a potential step or on a potential barrier and use elementary quantum wave mechanics to obtain the transmission probability. We emphasize the connection to related phenomena in optics, such as the Snell-Descartes law of refraction, total internal reflection, Fabry-Pérot resonances, negative refraction index materials (the so called meta-materials), etc. We also stress that Klein tunneling is not a genuine quantum tunneling effect as it does not necessarily involve passing through a classically forbidden region via evanescent waves. A crucial role in Klein tunneling is played by the conservation of (sublattice) pseudo-spin, which is discussed in detail. A major consequence is the absence of backscattering at normal incidence, of which we give a new shorten proof. The current experimental status is also thoroughly reviewed. The Appendix contains the discussion of a one-dimensional toy model that clearly illustrates the difference in Klein tunneling between mono- and bi-layer graphene.

References

  1. 1.
    G. Gamow, Z. Phys. 51, 204 (1928)ADSCrossRefGoogle Scholar
  2. 2.
    R.W. Gurney, E.U. Condon, Nature 122, 439 (1928)ADSMATHCrossRefGoogle Scholar
  3. 3.
    R.W. Gurney, E.U. Condon, Phys. Rev. 33, 127 (1929)ADSCrossRefGoogle Scholar
  4. 4.
    A. Messiah, Quantum mechanics (Dover, 1999)Google Scholar
  5. 5.
    O. Klein, Z. Phys. 53, 157 (1929)ADSCrossRefGoogle Scholar
  6. 6.
    A. Calogeracos, N. Dombey, Contemp. Phys. 40, 313 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    P.A.M. Dirac, Proc. R. Soc. Lond. 117, 610 (1928)ADSMATHCrossRefGoogle Scholar
  8. 8.
    P.A.M. Dirac, The Principles of quantum mechanics (Oxford University Press, 1930)Google Scholar
  9. 9.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 2, 620 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Cheianov, V. Fal’ko, Phys. Rev. B 74, 041403 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Pereira, V. Mlinar, F.M. Peeters, P. Vasilopoulos, Phys. Rev. B 74, 045424 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    B. Huard et al., Phys. Rev. Lett. 98, 236803 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R.V. Gorbachev, A.S. Mayorov, A.K. Savchenko, D.W. Horsell, F. Guinea, Nano Lett. 8, 1995 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    N. Stander et al., Phys. Rev. Lett. 102, 026807 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A.F. Young, P. Kim, Nature Phys. 5, 222 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Calogeracos, N. Dombey, Int. J. Mod. Phys. A 14, 631 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Pereira Jr, F.M. Peeters, A. Chaves, G.A. Farias, Semicond. Sci. Technol. 25, 033002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)ADSMATHCrossRefGoogle Scholar
  20. 20.
    C. Bena, G. Montambaux, New J. Phys. 11, 095003 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Castro-Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Geim, P. Kim, Sci. Amer. 298, 90 (2008)CrossRefGoogle Scholar
  23. 23.
    J.N. Fuchs, M.O. Goerbig, Pour la Science 367, 36 (2008)Google Scholar
  24. 24.
    N.H. Shon, T. Ando, J. Phys. Soc. Jpn 67, 2421 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    T. Ando, T. Nakanishi, J. Phys. Soc. Jpn 67, 1704 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn 67, 2857 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    E. McCann, K. Kechedzhi, V.I. Falko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.H. Bardarson, J. Tworzydlo, P. Brouwer, C.W.J. Beenakker, Phys. Rev. Lett. 99, 106801 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    K. Nomura, M. Koshino, S. Ryu, Phys. Rev. Lett. 99, 146806 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    V. Jakubský, L.M. Nieto, M.S. Plyushchay, Phys. Rev. D 83, 047702 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    V.V. Cheianov, V. Fal’ko, B.L. Altshuler, Science 315, 1252 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.B. Pendry, D.R. Smith, Sci. Amer. 295, 60 (2006)CrossRefADSGoogle Scholar
  33. 33.
    A.G. Aronov, G.E. Pikus, Sov. Phys. JETP 24, 188 (1967)ADSGoogle Scholar
  34. 34.
    J. Cayssol, B. Huard, D. Goldhaber-Gordon, Phys. Rev. B 79, 075428 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    X. Chen, J.W. Tao, Appl. Phys. Lett. 94, 262102 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Shytov, M.S. Rudner, L.S. Levitov, Phys. Rev. Lett. 101, 156804 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J. Tworzydlo et al., Phys. Rev. Lett. 96, 246802 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    E.B. Sonin, Phys. Rev. B 79, 195438 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, IEEE Electron Device Lett. 28, 282 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D.A. Abanin, L.S. Levitov, P. Kim, Phys. Rev. Lett. 99, 166804 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    G. Liu, J. Velasco, W. Bao, C.N. Lau, Appl. Phys. Lett. 92, 203103 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    M.M. Fogler, D.S. Novikov, L.I. Glazman, B.I. Shklovskii, Phys. Rev. B 77, 075420 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    L.M. Zhang, M.M. Fogler, Phys. Rev. Lett. 100, 116804 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    E. Rossi, J.H. Badarson, P.W. Brouwer, S. Das Sarma, Phys. Rev. B 81, R121408 (2010)Google Scholar
  48. 48.
    M.R. Setare, D. Jahani, Physica B Condens. Matter. 405, 1433 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    S. Park, H.-S. Sim, arXiv:1103.3331 (2011)Google Scholar
  50. 50.
    O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M. Segev, T. Pereg-Barnea, Phys. Rev. Lett. 104, 063901 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 82, 115417 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    C.H. Park, L. Yang, Y.W. Son, M.L. Cohen, S.G. Louie, Nature Phys. 4, 213 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    M. Barbier, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 80, 205415 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    S. Ghosh, M. Sharma, J. Phys.: Condens. Matter 21, 292204 (2009)CrossRefGoogle Scholar
  55. 55.
    M. Bocquet, Nucl. Phys. B 546, 621 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  56. 56.
    N. Mott, W.D. Twose, Adv. Phys. 10, 107 (1961)ADSCrossRefGoogle Scholar
  57. 57.
    F. Sauter, Z. Phys. 73, 547 (1931)ADSMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut d’Électronique FondamentaleUniv. Paris-Sud, CNRS UMR 8622OrsayFrance
  2. 2.Laboratoire de Physique des SolidesUniv. Paris-Sud, CNRS, UMR 8502OrsayFrance

Personalised recommendations