Skip to main content
Log in

Coexistence in the two-dimensional May-Leonard model with random rates

  • Interdisciplinary Physics
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We employ Monte Carlo simulations to numerically study the temporal evolution and transient oscillations of the population densities, the associated frequency power spectra, and the spatial correlation functions in the (quasi-) steady state in two-dimensional stochastic May-Leonard models of mobile individuals, allowing for particle exchanges with nearest-neighbors and hopping onto empty sites. We therefore consider a class of four-state three-species cyclic predator-prey models whose total particle number is not conserved. We demonstrate that quenched disorder in either the reaction or in the mobility rates hardly impacts the dynamical evolution, the emergence and structure of spiral patterns, or the mean extinction time in this system. We also show that direct particle pair exchange processes promote the formation of regular spiral structures. Moreover, upon increasing the rates of mobility, we observe a remarkable change in the extinction properties in the May-Leonard system (for small system sizes): (1) as the mobility rate exceeds a threshold that separates a species coexistence (quasi-) steady state from an absorbing state, the mean extinction time as function of system size N crosses over from a functional form ∼ e cN/N (where c is a constant) to a linear dependence; (2) the measured histogram of extinction times displays a corresponding crossover from an (approximately) exponential to a Gaussian distribution. The latter results are found to hold true also when the mobility rates are randomly distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, UK, 1982)

  2. J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics (Cambridge University Press, Cambridge, UK, 1998)

  3. M.A. Nowak, Evolutionary Dynamics (Belknap Press, Cambridge, USA, 2006)

  4. G. Szabó, Phys. Rep. 446, 97 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.M. May, W.J. Leonard, SIAM J. Appl. Math. 29, 243 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. R.M. May, Stability and Complexity in Model Ecosystems (Cambridge University Press, Cambridge, UK, 1974)

  7. J.M. Smith, Models in Ecology (Cambridge University Press, Cambridge, UK, 1974)

  8. R.E. Michod, Darwinian Dynamics (Princeton University Press, Princeton, USA, 2000)

  9. R.V. Sole, J. Basecompte, Self-Organization in Complex Ecosystems (Princeton University Press, Princeton, USA, 2006)

  10. D. Neal, Introduction to Population Biology (Cambridge University Press, Cambridge, UK, 2004)

  11. L. Frachebourg, P.L. Krapivsky, J. Phys. A: Math. Gen. 31, L287 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. B. Sinervo, C.M. Lively, Nature (London) 380, 240 (1996)

    Article  ADS  Google Scholar 

  13. K.R. Zamudio, B. Sinervo, Proc. Natl. Acad. Sci. (USA) 97, 14427 (2000)

    Article  ADS  Google Scholar 

  14. B. Kerr, M.A. Riley, M.W. Feldman, B.J.M. Bohannan, Nature (London) 418, 171 (2002)

    Article  ADS  Google Scholar 

  15. T. Reichenbach, M. Mobilia, E. Frey, Nature (London) 448, 1046 (2007)

    Article  ADS  Google Scholar 

  16. T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. Lett. 99, 238105 (2007)

    Article  ADS  Google Scholar 

  17. T. Reichenbach, M. Mobilia, E. Frey, J. Theor. Biol. 254, 368 (2008)

    Article  Google Scholar 

  18. T. Reichenbach, M. Mobilia, E. Frey, Banach Center Publications 80, 259 (2008)

    Article  MathSciNet  Google Scholar 

  19. M. Peltomäki, M. Alava, Phys. Rev. E 78, 031906 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. E 74, 051907 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Berr, T. Reichenbach, M. Schottenloer, E. Frey, Phys. Rev. Lett. 102, 048102 (2009)

    Article  ADS  Google Scholar 

  22. L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 54, 6186 (1996)

    Article  ADS  Google Scholar 

  23. A. Provata, G. Nicolis, F. Baras, J. Chem. Phys. 110, 8361 (1999)

    Article  ADS  Google Scholar 

  24. K.I. Tainaka, Phys. Rev. E 50, 3401 (1994)

    Article  ADS  Google Scholar 

  25. G. Szabó, A. Szolnoki, Phys. Rev. E 65, 036115 (2002)

    Article  ADS  Google Scholar 

  26. M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 75, 052102 (2007)

    Article  ADS  Google Scholar 

  27. G.A. Tsekouras, A. Provata, Phys. Rev. E 65, 016204 (2001)

    Article  ADS  Google Scholar 

  28. Q. He, M. Mobilia, U.C. Täuber, Phys. Rev. E 82, 051909 (2010)

    Article  ADS  Google Scholar 

  29. G. Szabó, A. Szolnoki, R. Izsák, J. Phys. A 37, 2599 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. A. Szolnoki, G. Szabó, Phys. Rev. E 70, 037102 (2004)

    Article  ADS  Google Scholar 

  31. J.C. Claussen, A. Traulsen, Phys. Rev. Lett. 100, 058104 (2008)

    Article  ADS  Google Scholar 

  32. U. Dobramysl, U.C. Täuber, Phys. Rev. Lett. 101, 258102 (2008)

    Article  ADS  Google Scholar 

  33. M. Mobilia, I.T. Georgiev, U.C. Täuber, J. Stat. Phys. 128, 447 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. M.J. Washenberger, M. Mobilia, U.C. Täuber, J. Phys.: Condens. Matter 19, 065139 (2007)

    Article  ADS  Google Scholar 

  35. M. Mobilia, J. Theor. Biol. 264, 1 (2010)

    Article  Google Scholar 

  36. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.W. Gardiner, Handbook of Stochastic Methods, 2nd edn. (Springer-Verlag, Berlin, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Täuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Mobilia, M. & Täuber, U.C. Coexistence in the two-dimensional May-Leonard model with random rates. Eur. Phys. J. B 82, 97–105 (2011). https://doi.org/10.1140/epjb/e2011-20259-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20259-x

Keywords

Navigation