Skip to main content
Log in

Work fluctuation theorem for coloured noise driven open systems

  • Regular Article
  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied work fluctuation behaviour in the presence of internal thermal noise as well as external coloured noise. The external coloured noise may have both Gaussian or non-Gaussian characteristics. We have investigated the dependence of position and work fluctuations on the properties of both the environments. For thermal noise driven systems, there is a maximum in the variation of mean square fluctuation of work (MSFW) as a function of damping strength at intermediate times, while at asymptotic long times MSFW monotonically increases in the same damping regime. But for external noise, MSFW monotonically decreases as a function of damping strength at intermediate times, whereas at long times it becomes almost independent of damping strength.Another interesting observation is that for the external noise driven systems, noise correlation time and damping strength have similar roles in the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 45 (2005)

    Article  Google Scholar 

  2. D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)

    Article  ADS  Google Scholar 

  3. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  4. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  5. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  6. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  7. T. Hantano, S.I. Sasa, Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  8. J. Liphardt et al., Science 296, 1833 (2002)

    Article  ADS  Google Scholar 

  9. F. Douarche et al., Europhys. Lett. 70, 593 (2005)

    Article  ADS  Google Scholar 

  10. O. Narayan, A. Dhar, J. Phys. A 37, 63 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E.M. Trepangnier et al., Proc. Natl. Acad. Sci. USA 101, 15038 (2004)

    Article  ADS  Google Scholar 

  12. T. Taniguchi, E.G.D. Cohen, J. Stat. Phys. 126, 1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E.G.D. Cohen, J. Stat. Mech. P07014 (2008)

  14. A. Baule, E.G.D. Cohen, Phys. Rev. E 80, 011110 (2009)

    Article  ADS  Google Scholar 

  15. E.G.D. Cohen, Phys. Rev. E 80, 011114 (2009)

    Article  ADS  Google Scholar 

  16. P. Hänggi, P. Jung, Adv. Chem. Phys. 89, 239 (1995)

    Article  Google Scholar 

  17. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  18. M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114, (2001)

    Article  ADS  MATH  Google Scholar 

  19. F.J. Castro, M.N. Kuperman, M.A. Fuentes, H.S. Wio, Phys. Rev. E 64, 051105 (2001)

    Article  ADS  Google Scholar 

  20. Ch.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)

    Article  ADS  Google Scholar 

  21. C. Van den Broeck, P. Hänggi, Phys. Rev. A 30, 2730 (1984)

    Article  ADS  Google Scholar 

  22. P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994)

    Article  ADS  Google Scholar 

  23. J. Masoliver, K. Lindenberg, B.J. West, Phys. Rev. A 34, 2351 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Marchi, F. Marchesoni, L. Gammaitoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. E 54, 3479 (1996)

    Article  ADS  Google Scholar 

  25. B. Dybiec, E.G. Nowak, P. Hänggi, Phys. Rev. E 75, 021109 (2007)

    Article  ADS  Google Scholar 

  26. B.C. Bag, Eur. Phys. J. B 34, 115 (2003)

    Article  ADS  Google Scholar 

  27. M.K. Sen, B.C. Bag, Euro. Phys. J. B 68, 253 (2009)

    Article  ADS  Google Scholar 

  28. A. Baura, M.K. Sen, G. Goswami, B.C. Bag, J. Chem. Phys. 134, 044126 (2011)

    Article  ADS  Google Scholar 

  29. P. Majee, G. Goswami, B.C. Bag, Chem. Phys. Lett. 416, 256 (2005)

    Article  ADS  Google Scholar 

  30. B.C. Bag, C.K. Hu, Phys. Rev. E 73, 061107 (2006)

    Article  ADS  Google Scholar 

  31. G. Goswami, P. Majee, P.K. Ghosh, B.C. Bag, Physica A 374, 549 (2007)

    Article  ADS  Google Scholar 

  32. G. Goswami, P. Majee, B.C. Bag, Fluct. Noise Lett. 7, L151 (2007)

    Article  Google Scholar 

  33. M.K. Sen, A.K. Baura, B.C. Bag, J. Stat. Mech. P11004 (2009)

  34. B.C. Bag, K.G. Petrosyan, C.-K. Hu, Phys. Rev. E 76, 056210 (2007)

    Article  ADS  Google Scholar 

  35. M.K. Sen, B.C. Bag, K.G. Petrosyan, C.-K. Hu, J. Stat. Mech. P08018 (2010)

  36. P.K. Ghosh, M.K. Sen, B.C. Bag, Phys. Rev. E 78, 051103 (2008)

    Article  ADS  Google Scholar 

  37. Y. Gong, Y. Xie, Y. Hao, J. Chem. Phys. 130, 165106 (2009)

    Article  ADS  Google Scholar 

  38. S. Bouzat, H.S. Wio, Eur. Phys. J. B 41, 97 (2004)

    Article  ADS  Google Scholar 

  39. S. Bouzat, H.S. Wio, Physica A 351, 69 (2005)

    Article  ADS  Google Scholar 

  40. B.C. Bag, C.-K. Hu, J. Stat. Mech. P02003 (2009)

  41. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Processes (Springer-Verlag, New York, 1985)

  42. L. Borland, Phys. Lett. A 245, 67 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. M.A. Fuentes, H.S. Wio, R. Toral, Physica A 303, 91 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)

    Article  ADS  Google Scholar 

  45. M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 2715 (1945)

    Article  MathSciNet  Google Scholar 

  46. G.M. Wang, E.M. Sevic, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  47. R. Van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003)

    Article  ADS  Google Scholar 

  48. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  49. H.S. Wio, R. Toral, Physica D 193, 161 (2004)

    Article  ADS  MATH  Google Scholar 

  50. R. Toral, Computational Physics, Lecture Notes in Physics, edited by P. Garrido, J. Marro (Springer-Verlag, Berlin, 1995), Vol. 448

  51. R. Mannella, Numerical Integration of Stochastic Differential Equations, Supercomputation in Nonlinear and Disorder Systems: Algorithms, Applications and Architectures (1997), pp-100, http://arxiv.org/abs/condmat/9709326

  52. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Bag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, M.K., Baura, A. & Bag, B.C. Work fluctuation theorem for coloured noise driven open systems. Eur. Phys. J. B 83, 381 (2011). https://doi.org/10.1140/epjb/e2011-20199-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20199-5

Keywords

Navigation