Skip to main content
Log in

The exchange interaction effect in the scanning tunneling spectroscopy of a two-orbital Anderson impurity on metallic surface

  • Mesoscopic and Nanoscale Systems
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the scanning tunneling spectroscopy (STS) of a two-orbital Anderson impurity adsorbed on a metallic surface by using the numerical renormalization group (NRG) method. The density of state of magnetic impurity and the local conduction electron are calculated. We obtain the Fano resonance line shape in the STM conductance at zero temperature. For the impurity atom with antiferromagnetic inter-orbital exchange interaction and a spin singlet ground state, we show that a dip in the STM spectra around zero bias voltage regime and side peaks of spin excitation can be observed. The spin excitation energy is proportional to the exchange interaction strength. As the exchange interaction is ferromagnetic, the underscreened Kondo effect dominates the low energy properties of this system, and it gives rise to drastically different STM spectra as compared with the spin singlet case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wiesendanger, Rev. Mod. Phys. 81, 1409 (2009)

    Article  Google Scholar 

  2. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, England, 1993)

  3. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science 280, 567 (1998)

    Article  ADS  Google Scholar 

  4. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Phys. Rev. B 64, 165412 (2001)

    Article  ADS  Google Scholar 

  5. J.T. Li, W.-D. Schneider, R. Berndt, B. Delley, Phys. Rev. Lett. 80, 2893 (1998)

    Article  ADS  Google Scholar 

  6. H.C. Manoharan, C.P. Lutz, D.M. Eigler, Nature (London) 403, 512 (2000)

    Article  ADS  Google Scholar 

  7. N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, K. Kern, Phys. Rev. Lett. 88, 096804 (2002)

    Article  ADS  Google Scholar 

  8. L. Vitali, R. Ohmann, S. Stepanow, P. Gambardella, K. Tao, R.Z. Huang, V.S. Stepanyuk, P. Bruno, K. Kern, Phys. Rev. Lett. 101, 216802 (2008)

    Article  ADS  Google Scholar 

  9. N. Néel, J. Kröger, L. Limot, K. Palotas, W.A. Hofer, R. Berndt, Phys. Rev. Lett. 98, 016801 (2007)

    Article  ADS  Google Scholar 

  10. J. Henzl, K. Morgenstern, Phys. Rev. Lett. 98, 266601 (2007)

    Article  ADS  Google Scholar 

  11. P. Wahl, L. Diekhöner, M.A. Schneider, L. Vitali, G. Wittich, K. Kern, Phys. Rev. Lett. 93, 176603 (2004)

    Article  ADS  Google Scholar 

  12. T. Jamneala, V. Madhavan, W. Chen, M.F. Crommie, Phys. Rev. B 61, 9990 (2000)

    Article  ADS  Google Scholar 

  13. P. Wahl, P. Simon, L. Diekhöner, V.S. Stepanyuk, P. Bruno, M.A. Schneider, K. Kern, Phys. Rev. Lett. 98, 056601 (2007)

    Article  ADS  Google Scholar 

  14. A.F. Otte, M. Ternes, K. Von Bergmann, S. Loth, H. Brune, C.P. Lutz, C.F. Hirjibehedin, A.J. Heinrich, Nature Physics 4, 847 (2008)

    Article  ADS  Google Scholar 

  15. Y.S. Fu, T. Zhang, S.H. Ji, X. Chen, X.C. Ma, J.F. Jia, Q.K. Xue, Phys. Rev. Lett. 103, 257202 (2009)

    Article  ADS  Google Scholar 

  16. A. Schiller, S. Hershfield, Phys. Rev. B 61, 9036 (2000)

    Article  ADS  Google Scholar 

  17. M. Plihal, J.W. Gadzuk, Phys. Rev. B 63, 085404 (2001)

    Article  ADS  Google Scholar 

  18. O. Ujsaghy, J. Kroha, L. Szunyogh, A. Zawadowski, Phys. Rev. Lett. 85, 2557 (2000)

    Article  ADS  Google Scholar 

  19. H.G. Luo, T. Xiang, X.Q. Wang, Z.B. Su, L. Yu, Phys. Rev. Lett. 92, 256602 (2004)

    Article  ADS  Google Scholar 

  20. J. Merino, O. Gunnarsson, Phys. Rev. Lett. 93, 156601 (2004)

    Article  ADS  Google Scholar 

  21. J. Merino, O. Gunnarsson, Phys. Rev. B 69, 115404 (2004)

    Article  ADS  Google Scholar 

  22. C.Y. Lin, A.H. Castro Neto, B.A. Jones, Phys. Rev. Lett. 97, 156102 (2006)

    Article  ADS  Google Scholar 

  23. A. Gumbsch, G. Barcaro, M.G. Ramsey, S. Surnev, A. Fortunelli, F.P. Netzer, Phys. Rev. B 81, 165420 (2010)

    Article  ADS  Google Scholar 

  24. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  25. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1003 (1980)

    Article  ADS  Google Scholar 

  26. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1044 (1980)

    Article  ADS  Google Scholar 

  27. T.A. Costi, A.C. Hewson, V. Zlatić, J. Phys.: Condens. Matter 6, 2519 (1994)

    Article  ADS  Google Scholar 

  28. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  29. W. Izumida, O. Sakai, Phys. Rev. B 62, 10260 (2000)

    Article  ADS  Google Scholar 

  30. P.S. Cornaglia, D.R. Grempel, Phys. Rev. B 71, 075305 (2005)

    Article  ADS  Google Scholar 

  31. W. Hofstetter, H. Schoeller, Phys. Rev. Lett. 88, 016803 (2001)

    Article  ADS  Google Scholar 

  32. W. Hofstetter, G. Zarand, Phys. Rev. B 69, 235301 (2004)

    Article  ADS  Google Scholar 

  33. R.Žitko, J. Bonča, Phys. Rev. B 76, 241305fpage> (R) (2007year>)

    Article  ADS  Google Scholar 

  34. R.Žitko, J. Bonča, Phys. Rev. B 74, 045312 (2006)

    Article  ADS  Google Scholar 

  35. C.H. Chung, W. Hofstetter, Phys. Rev. B 76, 045329 (2007)

    Article  ADS  Google Scholar 

  36. M. Pustilnik, L.I. Glazman, Phys. Rev. Lett. 85, 2993 (2000)

    Article  ADS  Google Scholar 

  37. M. Vojta, R. Bulla, W. Hofstetter, Phys. Rev. B 65, 140405 (R)(2002)

  38. S. Nishimoto, T. Pruschke, R.M. Noack, J. Phys.: Condens. Matter 18, 981 (2006)

    Article  ADS  Google Scholar 

  39. G.H. Ding, F. Ye, B. Dong, J. Phys.: Condens. Matter 21, 455303 (2009)

    Article  ADS  Google Scholar 

  40. P.S. Cornaglia, C.A. Balseiro, Phys. Rev. B 67, 205420 (2003)

    Article  ADS  Google Scholar 

  41. R.Žitko, R. Peters, T. Pruschke, Phys. Rev. B 78, 224404 (2008)

    Article  ADS  Google Scholar 

  42. J. Fransson, A.V. Balatsky, Phys. Rev. B 75, 153309 (2007)

    Article  ADS  Google Scholar 

  43. J. Fransson, A.V. Balatsky, J. Fransson, Phys. Rev. B 76, 045416 (2007)

    Article  ADS  Google Scholar 

  44. P. Lucignano, R. Mazzarello, A. Smogunov, M. Fabrizio, E. Tosatti, Nature Mater. 8, 563 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. -H. Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, G.H., Ye, F. & Dong, B. The exchange interaction effect in the scanning tunneling spectroscopy of a two-orbital Anderson impurity on metallic surface. Eur. Phys. J. B 81, 467–473 (2011). https://doi.org/10.1140/epjb/e2011-20155-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20155-5

Keywords

Navigation