Skip to main content
Log in

Spin-flip assisted tunneling through quantum dot based magnetic tunnel junctions

  • Mesoscopic and Nanoscale Systems
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically study the spin-polarized transport through double barrier magnetic tunnel junction (DBMTJ) consisting of the quantum dot sandwiched by two ferromagnetic (FM) leads. The tunneling current through the DBMTJ is evaluated based on the Keldysh nonequilibrium Green’s function approach. The self-energy and Green’s function of the dot are analytically obtained via the equation of motion method, by systematically incorporating two spin-flip phenomena, namely, intra-dot spin-flip, and spin-flip coupling between the lead and the central dot region. The effects of both spin-flip processes on the spectral functions, tunneling current and tunnel magnetoresistance (TMR) are analyzed. The spin-flip effects result in spin mixing, thus contributing to the spectral function of the off-diagonal Green’s function components \(\left( {G_{\sigma \bar \sigma }^r } \right)\). Interestingly, the spin-flip coupling between the lead and dot enhances both the tunneling current and the TMR for applied bias above the threshold voltage V th . On the other hand, the intra-dot spin-flip results in an additional step in the I-V characteristics near V th . Additionally, it suppresses the tunneling current but enhances the TMR. The opposing effects of the two types of spin-flip on the tunneling current means that one spin-flip mechanism can be engineered to counteract the other, so as to maintain the tunneling current without reducing the TMR. Their additive effect on the TMR enables the DBMTJ to attain a large tunneling current and high TMR for above threshold bias values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. N. Shaji et al., Nature Phys. 4, 540 (2008)

    Article  Google Scholar 

  3. H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics (Oxford University Press, 2004)

  4. I. Weymann, J. Barnaś, Phys. Rev. B 75, 155308 (2007)

    Article  ADS  Google Scholar 

  5. W. Rudziński, J. Barnaś, Phys. Rev. B 64, 085318 (2001)

    Article  ADS  Google Scholar 

  6. H.F. Mu, G. Su, Q.R. Zheng, Phys. Rev. B 73, 054414 (2006)

    Article  ADS  Google Scholar 

  7. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  8. R.M. Potok, I.G. Rau, H. Shtrikman, Y. Oreg, D. Goldhaber-Gordon, Nature 446, 167 (2007)

    Article  ADS  Google Scholar 

  9. H. Katsura, J. Phys. Soc. Jpn 76, 054710 (2007)

    Article  ADS  Google Scholar 

  10. T. Lobo, M.S. Figueira, M.E. Foglio, Nanotechnology 17, 6016 (2006)

    Article  ADS  Google Scholar 

  11. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 66, 3048 (1991)

    Article  ADS  Google Scholar 

  12. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  13. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  14. J.X. Zhu, A.V. Balatsky, Phys. Rev. Lett. 89, 286802 (2002)

    Article  ADS  Google Scholar 

  15. P. Stefański, Phys. Rev. B 79, 085312 (2009)

    Article  ADS  Google Scholar 

  16. M.M. Deshmukh, D.C. Ralph, Phys. Rev. Lett. 89, 266803 (2002)

    Article  ADS  Google Scholar 

  17. A. Pasupathy, R. Bialczak, J. Martinek, J. Grose, L. Donev, P. McEuen, D.C. Ralph, Science 306, 86 (2004)

    Article  ADS  Google Scholar 

  18. K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K. Hirakawa, T. Taniyama, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 90, 053108 (2007)

    Article  ADS  Google Scholar 

  19. J. Wabnig, B.W. Lovett, New J. Phys. 11, 043031 (2009)

    Article  ADS  Google Scholar 

  20. Y. Manassen, I. Mukhopadhay, N.R. Rao, Phys. Rev. B 61, 16223 (2001)

    Article  ADS  Google Scholar 

  21. K.C. Lin, D.-S. Chuu, Phys. Rev. B 72, 125314 (2005)

    Article  ADS  Google Scholar 

  22. P. Zhang, Q.K. Xue, Y.P. Wang, X.C. Xie, Phys. Rev. Lett. 89, 286803 (2002)

    Article  ADS  Google Scholar 

  23. F.M. Souza, J.C. Egues, A.P. Jauho, Braz. J. Phys. 34, 565 (2004)

    Article  Google Scholar 

  24. P. Zhang, Physica E 31, 78 (2006)

    Article  ADS  Google Scholar 

  25. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C 4, 916 (1971)

    Article  ADS  Google Scholar 

  26. G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, M.J., Jalil, M.B.A., Tan, S.G. et al. Spin-flip assisted tunneling through quantum dot based magnetic tunnel junctions. Eur. Phys. J. B 82, 37–46 (2011). https://doi.org/10.1140/epjb/e2011-20149-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20149-3

Keywords

Navigation