Skip to main content
Log in

Influence of longitudinal optical phonons on domain wall resistance in nanowires based on diluted magnetic semiconductors

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present paper, the influence of longitudinal optical phonons on domain wall resistance in nanowires based on diluted magnetic semiconductors has been studied within the semiclassical approach. The analysis has been based on the Boltzmann transport equation within the relaxation time approximation. The modulation of the exchange and the impurity interactions by lattice vibrations have been taken into account and the hole-phonon interaction has also been considered. The results indicate that phonons have a considerable effect on increasing the domain wall resistance. The resistance enhancement is observed by increasing the temperature. The magnetic impurities are also effective on enhancing the domain wall resistance. In designing spintronics devices based on diluted magnetic semiconductors, considering the effects of phonons and magnetic impurities on the domain wall resistance is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer, Nanoscale magnetic materials and applications, 1st edn. (Springer, 2009)

  2. Y. Xu, S. Thompson, Spintronic Materials and Technology, Series in Material Science and Technology (Taylor and Francis, 2006)

  3. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  4. M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.K. Ritums, S.M. Bedair, Appl. Phys. Lett. 79, 3474 (2001)

    Article  ADS  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  6. G.T. Thaler, M.E. Overberg, B. Gila, R. Frazier, C.R. Abernathy, S.J. Pearton, J.S. Lee, S.Y. Lee, Y.D. Park, Z.G. Khim, J. Kim, F. Ren, Appl. Phys. Lett. 80, 3964 (2002)

    Article  ADS  Google Scholar 

  7. M.J. Reed, F.E. Arkun, E.A. Berkman, N.A. Elmasry, J. Zavada, M.O. Luen, M.L. Reed, S.M. Bedair, Appl. Phys. Lett. 86, 102504 (2005)

    Article  ADS  Google Scholar 

  8. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  9. M.B. Fathi, A. Phirouznia, J. Magn. Magn. Mater. 322, 2401 (2010)

    Article  ADS  Google Scholar 

  10. P.M. Levy, S. Zhang, Phys. Rev. Lett. 79, 5110 (1997)

    Article  ADS  Google Scholar 

  11. A. Phirouznia, M.M. Tehranchi, M. Ghanaatshoar, Phys. Rev. B 75, 224403 (2007)

    Article  ADS  Google Scholar 

  12. M. Ghanaatshoar, V. Fallahi, M.M. Tehranchi, A. Phirouznia, IEEE Trans. Magn. 44, 3127 (2008)

    Article  ADS  Google Scholar 

  13. A. Phirouznia, F. Ghamari, Eur. Phys. J. B 74, 357 (2010)

    Article  ADS  Google Scholar 

  14. V. Fallahi, M. Ghanaatshoar, Phys. Rev. B 82, 035210 (2010)

    Article  ADS  Google Scholar 

  15. A. Phirouznia, M.M. Tehranchi, M. Ghanaatshoar, Eur. Phys. J. B 54, 103 (2006)

    Article  ADS  Google Scholar 

  16. R. Majidi, M.M. Tehranchi, A. Phirouznia, K. Ghafoori Tabrizi, J. Phys.: Conf. Ser. 292, 012009 (2011)

    Article  ADS  Google Scholar 

  17. R. Majidi, M.M. Tehranchi, A. Phirouznia, K. Ghafoori Tabrizi, Eur. Phys. J. B 76, 475 (2010)

    Article  ADS  Google Scholar 

  18. Z.B. Zhang, T. Taliercio, S. Kolliakos, P. Lefebvre, J. Phys.: Condens. Matter 13, 7053 (2001)

    Article  ADS  Google Scholar 

  19. T. Sugaya, J.P. Bird, D.K. Ferry, A. Sergeev, V. Mitin, K.-Y. Jang, M. Ogura, Y. Sugiyama, Appl. Phys. Lett. 81, 727 (2002)

    Article  ADS  Google Scholar 

  20. H. Bruus, K. Flensberg, H. Smith, Phys. Rev. B 48, 11144 (1993)

    Article  ADS  Google Scholar 

  21. R. Majidi, M.M. Tehranchi, A. Phirouznia, K.G. Tabrizi, Phys. Rev. B 83, 035413 (2011)

    Article  ADS  Google Scholar 

  22. M.P. Marder, Condensed Matter Physics (John Wiley & Sons, Inc., New York, 2000)

  23. C. Hamaguchi, Basic semiconductor physics, corrected edition (Springer, 2006)

  24. N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt, Rinehart and Winston, New York, 1976)

  25. V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, A. Zubrilov, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (John Wiley & Sons, Inc., New York, 2001)

  26. K. Ellmer, A. Klein, B. Tech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells Series (Springer, 2008)

  27. M.K. Li, N.M. Kim, S.J. Lee, H.C. Jeon, T.W. Kang, Appl. Phys. Lett. 88, 162102 (2006)

    Article  ADS  Google Scholar 

  28. C. Ertler, J. Fabian, Phys. Rev. B 75, 195323 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tehranchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidi, R., Tehranchi, M.M., Phirouznia, A. et al. Influence of longitudinal optical phonons on domain wall resistance in nanowires based on diluted magnetic semiconductors. Eur. Phys. J. B 81, 209–213 (2011). https://doi.org/10.1140/epjb/e2011-20089-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20089-x

Keywords

Navigation