Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

Colloquium

Abstract

Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

References

  1. 1.
    S. Yip, Nat. Mater. 2, 3 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    Handbook of Materials Modeling, edited by S. Yip (Springer, New York, 2005) Google Scholar
  3. 3.
    T. Zhu, J. Li, Prog. Mater. Sci. 55, 710 (2010) CrossRefGoogle Scholar
  4. 4.
    Y.Z. Wang, J. Li, Acta Mater. 58, 1212 (2010) CrossRefGoogle Scholar
  5. 5.
    US-NSF, Blue Ribbon Panel on Simulation-Based Engineering Science (2006) Google Scholar
  6. 6.
    US-DOE, Decadal Challenges for Predicting and Controlling Materials Performance in Extremes (Los Alamos National Laboratory, 2010) Google Scholar
  7. 7.
    A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    A. Barducci, M. Bonomi, M. Parrinello, in WIREs. Comput. Mol. Sci., wires.wiley.com/wcms, Jan.–Feb. 1 (2011) Google Scholar
  11. 11.
    A. Kushima, X. Lin, J. Li, J. Eapen, J.C. Mauro, X. Qian, P. Diep, S. Yip, J. Chem. Phys. 130, 224504 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A. Kushima, X. Lin, J. Li, X. Qian, J. Eapen, J.C. Mauro, P. Diep, S. Yip, J. Chem. Phys. 131, 164505 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    J. Li, A. Kushima, J. Eapen, X. Lin, X. Qian, J.C. Mauro, P. Diep, S. Yip, PLoS ONE 6, e17909 (2011) Google Scholar
  14. 14.
    T.T. Lau, A. Kushima, S. Yip, IOP Conference Series Materials Science and Engineering 3, 012002 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    T.T. Lau, A. Kushima, S. Yip, Phys. Rev. Lett. 104, 175501 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    S. Hara, J. Li, Phys. Rev. B 82, 184114 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Fan, A. Kushima, S. Yip, B. Yildiz, Phys. Rev. Lett. 106, 125501 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    A. Ishii, S. Ogata, H. Kimizuka, J. Li, Adaptive boost molecular dynamics simulation of carbon diffusion in iron, to be published (2011) Google Scholar
  19. 19.
    C.A. Angell, Science 267, 1924 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    C.A. Angell, J. Phys. Chem. Solids 49, 863 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    K. Trachenko, V.V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    J. Li, Mater. Res. Soc. Bulletin 32, 151 (2007) CrossRefGoogle Scholar
  26. 26.
    J.D. Eshelby, Proc. R. Soc. Lond. A 241, 376 (1957) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    H. Jónsson, G. Mills, K.W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, 1998) Google Scholar
  28. 28.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Natl. Acad. Sci. USA 104, 3031 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008) CrossRefGoogle Scholar
  30. 30.
    A.F. Voter, F. Montalenti, T.C. Germann, Ann. Rev. Mater. Res. 32, 321 (2002) CrossRefGoogle Scholar
  31. 31.
    M. Goldstein, J. Chem. Phys. 51, 3728 (1969) ADSCrossRefGoogle Scholar
  32. 32.
    D.J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003) Google Scholar
  33. 33.
    F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982) ADSCrossRefGoogle Scholar
  34. 34.
    F.H. Stillinger, T.A. Weber, Science 225, 983 (1984) ADSCrossRefGoogle Scholar
  35. 35.
    F. Sciortino, J. Stat. Mech. P05015 (2005) Google Scholar
  36. 36.
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977) ADSCrossRefGoogle Scholar
  37. 37.
    T. Huber, A.E. Torda, W.F. Gunsteren, J. Comput. Aided Mol. Design 8, 695 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    E. Darve, A. Pohorille, J. Chem. Phys. 115, 9169 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    D. Rodriguez-Gomez, E. Darve, A. Pohorille, J. Chem. Phys. 120, 3563 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001) ADSCrossRefGoogle Scholar
  42. 42.
    H. Grubmüller, Phys. Rev. E 52, 2893 (1995) ADSCrossRefGoogle Scholar
  43. 43.
    H. Eyring, J. Chem. Phys. 3, 107 (1935) ADSCrossRefGoogle Scholar
  44. 44.
    G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957) ADSCrossRefGoogle Scholar
  45. 45.
    B.P. Uberuaga, R.G. Hoagland, A.F. Voter, S.M. Valone, Phys. Rev. Lett. 99, 135501 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    G. Henkelman, H. Jonsson, J. Chem. Phys. 111, 7010 (1999) ADSCrossRefGoogle Scholar
  47. 47.
    G.T. Barkema, N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    D.W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963) MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    R.A. Miron, K.A. Fichthorn, J. Chem. Phys. 119, 6210 (2003) ADSCrossRefGoogle Scholar
  50. 50.
    L.Y. Chen, N.J.M. Horing, J. Chem. Phys. 126, 224103 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    G. Bussi, A. Laio, M. Parrinello, Phys. Rev. Lett. 96, 090601 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    P.G. Kevrekidis, C. Theodoropoulos, I.G. Kevrekidis, O. Runborg, J.M. Hyman, C.W. Gear, Comm. Math. Sci. 1, 715 (2003) MathSciNetMATHGoogle Scholar
  53. 53.
    I.G. Kevrekidis, C.W. Gear, G. Hummer, AIChE J. 50, 1346 (2004) CrossRefGoogle Scholar
  54. 54.
    D. Donadio, P. Raiteri, M. Parrinello, J. Phys. Chem. B 109, 5421 (2005) CrossRefGoogle Scholar
  55. 55.
    F. Trudu, D. Donadio, M. Parrinello, Phys. Rev. Lett. 97, 105701 (2006) ADSCrossRefGoogle Scholar
  56. 56.
    C. Michel, A. Laio, A. Milet, J. Chem. Theory Comput. 5, 2193 (2009) CrossRefGoogle Scholar
  57. 57.
    G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. USA 107, 17509 (2010) CrossRefGoogle Scholar
  58. 58.
    P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990) ADSCrossRefGoogle Scholar
  59. 59.
    G. Henkelman, G. Jóhannesson, H. Jónsson, Progress on Theoretical Chemistry and Physics, edited by S.D. Schwartz (Kluwer Academic, Dordrecht, 2000), pp. 269–300 Google Scholar
  60. 60.
    D. Passerone, M. Parrinello, Phys. Rev. Lett. 87, 108302 (2001) ADSCrossRefGoogle Scholar
  61. 61.
    W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995) ADSCrossRefGoogle Scholar
  62. 62.
    W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995) ADSCrossRefGoogle Scholar
  63. 63.
    O.M. Becker, M. Karplus, J. Chem. Phys. 106, 1495 (1997) ADSCrossRefGoogle Scholar
  64. 64.
    J.C. Dyre, Nat. Mater. 3, 749 (2004) ADSCrossRefGoogle Scholar
  65. 65.
    D.A. McQuarrie, Statistical Mechanics (University Science Books, 2000) Google Scholar
  66. 66.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (Dover, New York, 1991) Google Scholar
  67. 67.
    A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 80 (2009) Google Scholar
  68. 68.
    P. Moretti, A. Baronchelli, A. Barrat, R. Pastor-Satorras, J. Stat. Mech., P03032 (2011) Google Scholar
  69. 69.
    B. Coluzzi, G. Parisi, P. Verrocchio, J. Chem. Phys. 112, 2933 (2000) ADSCrossRefGoogle Scholar
  70. 70.
    C. Rehwald, O. Rubner, A. Heuer, Phys. Rev. Lett. 105, 117801 (2010) ADSCrossRefGoogle Scholar
  71. 71.
    W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997) ADSCrossRefGoogle Scholar
  72. 72.
    F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.-H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. USA 107, 22457 (2010) ADSCrossRefGoogle Scholar
  73. 73.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008) CrossRefGoogle Scholar
  74. 74.
    J.C. Mauro, R.J. Loucks, J. Balakrishnan, S. Raghavan, J. Chem. Phys. 126, 194103 (2007) ADSCrossRefGoogle Scholar
  75. 75.
    B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003) ADSCrossRefGoogle Scholar
  76. 76.
    Y. Mishin, M. Asta, J. Li, Acta Mater. 58, 1117 (2010) CrossRefGoogle Scholar
  77. 77.
    J. Li, Mater. Res. Soc. Bulletin 32, 151 (2007) CrossRefGoogle Scholar
  78. 78.
    T. Zhu, J. Li, S. Ogata, S. Yip, Mater. Res. Soc. Bulletin 34, 167 (2009) CrossRefGoogle Scholar
  79. 79.
    T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Phys. Rev. Lett. 100, 025502 (2008) ADSCrossRefGoogle Scholar
  80. 80.
    W. Meyer, H. Neldel, Z. Tech. Phys. 12, 588 (1937) Google Scholar
  81. 81.
    A. Yelon, B. Movaghar, Phys. Rev. Lett. 65, 618 (1990) ADSCrossRefGoogle Scholar
  82. 82.
    A. Yelon, B. Movaghar, R.S. Crandall, Rep. Prog. Phys. 69, 1145 (2006) ADSCrossRefGoogle Scholar
  83. 83.
    A. Yelon, B. Movaghar, H.M. Branz, Phys. Rev. B 46, 12244 (1992) ADSCrossRefGoogle Scholar
  84. 84.
    N.F. Mott, Proc. Phys. Soc. Lond. 60, 391 (1948) ADSMATHCrossRefGoogle Scholar
  85. 85.
    T. Frolov, Y. Mishin, Phys. Rev. B 79, 045430 (2009) ADSCrossRefGoogle Scholar
  86. 86.
    F.R.N. Nabarro, Metall. Mater. Trans. A 33, 213 (2002) CrossRefGoogle Scholar
  87. 87.
    V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 50, 61 (2002) CrossRefGoogle Scholar
  88. 88.
    H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Phys. Rev. B 60, 22 (1999) ADSCrossRefGoogle Scholar
  89. 89.
    J. Schiøtz, T. Vegge, F.D.D. Tolla, K.W. Jacobsen, Phys. Rev. B 60, 11971 (1999) ADSCrossRefGoogle Scholar
  90. 90.
    E. Bonetti, E.G. Campari, L. Del Bianco, L. Pasquini, E. Sampaolesi, Nanostruct. Mater. 11, 709 (1999) CrossRefGoogle Scholar
  91. 91.
    M.E. Kassner, Fundamentals of Creep in Metals and Alloys, 2nd edn. (Elsevier, Amsterdam, 2009) Google Scholar
  92. 92.
    A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972) Google Scholar
  93. 93.
    W. Götze, Complex Dynamics of Glass Florming Liquids (Oxford University Press, Oxford, 2009) Google Scholar
  94. 94.
    P.R. Monasterio, Multiscale Modeling of Slow Dynamical Processes. Ph.D. thesis, MIT, 2010 Google Scholar
  95. 95.
    G.A. Appignanesi, J.A. Rodriguez, R.A.M. Fris, W. Kob, Phys. Rev. Lett. 96, 057801 (2006) ADSCrossRefGoogle Scholar
  96. 96.
    C.R. Weinberger, W. Cai, Proc. Natl. Acad. Sci. USA 105, 14304 (2008) ADSCrossRefGoogle Scholar
  97. 97.
    C.R. Weinberger, W. Cai, Nano Lett. 10, 139 (2010) ADSCrossRefGoogle Scholar
  98. 98.
    M. Kabir, T.T. Lau, D. Rodney, S. Yip, K.J. Van Vliet, Phys. Rev. Lett. 105, 095501 (2010) ADSCrossRefGoogle Scholar
  99. 99.
    Y. Fan, A. Kushima, B. Yildiz, Phys. Rev. B 81, 104102 (2010) ADSCrossRefGoogle Scholar
  100. 100.
    M. Ciccotti, J. Phys. D Appl. Phys. 42, 214006 (2009) ADSCrossRefGoogle Scholar
  101. 101.
    T. Zhu, J. Li, X. Lin, S. Yip, J. Mech. Phys. Solids 53, 1597 (2005) ADSMATHCrossRefGoogle Scholar
  102. 102.
    J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, J.J. Thomas, Cem. Concr. Res., in Press, Corrected Proof Google Scholar
  103. 103.
    R.J.M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vliet, M.J. Buehler, S. Yip, F.J. Ulm, Proc. Natl. Acad. Sci. USA 106, 16102 (2009) ADSCrossRefGoogle Scholar
  104. 104.
    R.L. Klueh, Int. Mat. Rev. 50, 287 (2005) CrossRefGoogle Scholar
  105. 105.
    S.M. Wiederhorn, J. Am. Ceram. Soc. 50, 407 (1967) CrossRefGoogle Scholar
  106. 106.
    D. Lootens, P. Hebraud, E. Lecolier, H.V. Damme, Oil Gas Sci. Technol. Rev. IFP 59, 31 (2004) CrossRefGoogle Scholar
  107. 107.
    K.J. Van Vliet, Sci. Model. Simul. 15, 67 (2008) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Kushima
    • 1
    • 2
  • J. Eapen
    • 3
    • 4
  • Ju Li
    • 2
  • S. Yip
    • 1
    • 5
  • T. Zhu
    • 6
  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Nuclear EngineeringNorth Carolina State UniversityRaleighUSA
  4. 4.Center for Advanced Modeling and Simulation, Idaho National LaboratoryIdaho FallsUSA
  5. 5.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations