Skip to main content
Log in

Speed of complex network synchronization

  • Regular Article
  • Focus Section on Frontiers in Network Science: Advances and Applications
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Synchrony is one of the most common dynamical states emerging on networks. The speed of convergence towards synchrony provides a fundamental collective time scale for synchronizing systems. Here we study the asymptotic synchronization times for directed networks with topologies ranging from completely ordered, grid-like, to completely disordered, random, including intermediate, partially disordered topologies. We extend the approach of master stability functions to quantify synchronization times. We find that the synchronization times strongly and systematically depend on the network topology. In particular, at fixed in-degree, stronger topological randomness induces faster synchronization, whereas at fixed path length, synchronization is slowest for intermediate randomness in the small-world regime. Randomly rewiring real-world neural, social and transport networks confirms this picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arenas et al., Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002)

    Article  ADS  Google Scholar 

  3. M.G. Earl, S.H. Strogatz, Phys. Rev. E 67, 036204 (2003)

    Article  ADS  Google Scholar 

  4. M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89, 258701 (2002)

    Article  ADS  Google Scholar 

  5. J. Travers, S. Milgram, Sociometry 32, 425 (1969)

    Article  Google Scholar 

  6. D. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  7. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, A universal concept in nonlinear sciences (Cambridge Univ. Press, Cambridge, UK, 2001)

  8. S.H. Strogatz, Sync: The emerging science of spontaneous order (Penguin Books, London, UK, 2004)

  9. I. Kanter, W. Kinzel, E. Kanter, Europhys. Lett. 57, 141 (2002)

    Article  ADS  Google Scholar 

  10. Yu. Maistrenko et al., Phys. Rev. Lett. 93, 084102 (2004)

    Article  ADS  Google Scholar 

  11. T. Netoff et al., J. Neurosci. 24, 8075 (2004)

    Article  Google Scholar 

  12. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  13. T. Nishikawa et al., Phys. Rev. Lett. 91, 014101 (2003)

    Article  ADS  Google Scholar 

  14. L.M. Pecora, T. Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  15. A. Zumdieck et al., Phys. Rev. Lett. 93, 244103 (2004)

    Article  ADS  Google Scholar 

  16. R. Zillmer et al., Phys. Rev. E 76, 046102 (2007)

    Article  ADS  Google Scholar 

  17. S. Jahnke, R.-M. Memmesheimer, M. Timme, Phys. Rev. Lett. 100, 048102 (2008)

    Article  ADS  Google Scholar 

  18. R. Zillmer, N. Brunel, D. Hansel, Phys. Rev. E 79, 031909 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Olfati-Saber, Proceedings of the American Control Conference (IEEE, Los Alamitos, CA, USA, 2005), p. 2371

  20. N. Uchida, Z.F. Mainen, Nature Neurosci. 11, 1224 (2003)

    Article  Google Scholar 

  21. S. Thorpe, D. Fize, C. Marlot, Nature 381, 520 (1996)

    Article  ADS  Google Scholar 

  22. C. Grabow et al., Europhys. Lett. 90, 48002 (2010)

    Article  ADS  Google Scholar 

  23. M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 92, 074101 (2004)

    Article  ADS  Google Scholar 

  24. M. Timme, T. Geisel, F. Wolf, Chaos 16, 015108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Timme, Europhys. Lett. 76, 367 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. G.X. Qi et al., Phys. Rev. E 77, 056205 (2008)

    Article  ADS  Google Scholar 

  27. G.X. Qi et al., Europhys. Lett. 82, 38003 (2008)

    Article  ADS  Google Scholar 

  28. U. Ernst, K. Pawelzik, T. Geisel, Phys. Rev. Lett. 74, 1570 (1995)

    Article  ADS  Google Scholar 

  29. U. Ernst, K. Pawelzik, T. Geisel, Phys. Rev. E 57, 2150 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Denker et al., Phys. Rev. Lett. 92, 074103 (2004)

    Article  ADS  Google Scholar 

  31. R. Tönjes, N. Masuda, H. Kori, Chaos 20, 033108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Fagiolo, Phys. Rev. E 76, 026107 (2007)

    Article  ADS  Google Scholar 

  33. J. Acebron et al., Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  34. J.A. Almendral, A. Diaz-Guilera, New J. Phys. 9, 1211 (2007)

    Google Scholar 

  35. K.S. Fink et al., Phys. Rev. E 61, 5080 (2000)

    Article  ADS  Google Scholar 

  36. L. Huang et al., Phys. Rev. E 80, 36204 (2009)

    Article  ADS  Google Scholar 

  37. D.U. Hwang et al., Phys. Rev. Lett. 94, 138701 (2005)

    Article  ADS  Google Scholar 

  38. L.M. Pecora et al., Chaos 7, 520 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993)

  40. R. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50, 366 (1990)

    Google Scholar 

  41. M. Timme, F. Wolf, T. Geisel, Chaos 13, 377 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. M. Timme, F. Wolf, Nonlinearity 21, 1579 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. S. Lee, P. Kim, H. Jeong, Phys. Rev. E 73, 016102 (2006)

    Article  ADS  Google Scholar 

  44. K. Goh et al., Phys. Rev. Lett. 96, 018701 (2006)

    Article  ADS  Google Scholar 

  45. A. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116 (2005)

    Article  ADS  Google Scholar 

  46. A. Arenas, A. Diaz-Guilera, C.J. Perez-Vicente, Phys. Rev. Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  47. C. Zhou, J. Kurths, Chaos 16, 015104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  49. V. Colizza, R. Pastor-Satorras, A. Vespignani, Nature 3, 276 (2007)

    Google Scholar 

  50. M.A.J. Van Duijn et al., J. Math. Sociol. 27, (2003)

  51. T.B. Achacoso, W.S. Yamamoto, AY’s Neuroanatomy of C. Elegans for Computation (CRC Press, Boca Raton, FL, 1992)

  52. R. Cross, A. Parker, The Hidden Power of Social Networks (Harvard Business School Press, Boston, MA, 2001)

  53. D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Grabow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabow, C., Grosskinsky, S. & Timme, M. Speed of complex network synchronization. Eur. Phys. J. B 84, 613–626 (2011). https://doi.org/10.1140/epjb/e2011-20038-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20038-9

Keywords

Navigation