Skip to main content
Log in

First principle study of Li-intercalated (5, 5) ZnO nanotube bundles

  • Regular Article
  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have investigated the geometric and electronic structure of Li-intercalated (5, 5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results show that the geometrical structures are changed because of intercalation of lithium. The effect of Li intercalation on the density of state and electronic band structure is a shift of the Fermi energy due to the charge transfer from lithium to the ZnONTs. Although, the bundle of clean (5, 5) ZnONTs is semiconductor, all the Li-intercalated (5, 5) ZnONT bundles are found to be metallic. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  ADS  Google Scholar 

  2. G. Gao, T. Cagin, W.A. Goddard, Phys. Rev. Lett. 80, 5556–5559 (1998)

    Article  ADS  Google Scholar 

  3. J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 85, 1706–1709 (2000)

    Article  ADS  Google Scholar 

  4. Lithium Batteries: New Materials, Developments and Perspectives, edited by G. Pistoia, Industrial Chemistry Library (Elsevier, Amsterdam, 1994), Vol. 5

  5. J.R. Dahn, T. Zhang, Y. Liu, J.S. Xue, Science 270, 590 (1995)

    Article  ADS  Google Scholar 

  6. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 307, 153 (1999)

    Article  ADS  Google Scholar 

  7. A. Claye, J.E. Fischer, C.B. Huffmand, A.G. Rinzler, R.E. Smalley, J. Electrochem. Soc. 147, 2845 (2000)

    Article  Google Scholar 

  8. A. Claye, S. Rahman, J.E. Fischer, A. Sirenko, G.U. Sumanasekera, P.C. Eklund, Chem. Phys. Lett. 333, 16 (2001)

    Article  ADS  Google Scholar 

  9. C. Bower, A. Kleinhammes, Y. Wu, O. Zhou, Chem. Phys. Lett. 288, 481 (1998)

    Article  ADS  Google Scholar 

  10. S. Suzuki, C. Bower, O. Zhou, Chem. Phys. Lett. 285, 230 (1998)

    Article  ADS  Google Scholar 

  11. A. Claye, J.E. Fischer, A. Metrot, Chem. Phys. Lett. 330, 61 (2000)

    Article  ADS  Google Scholar 

  12. A.S. Claye, N.M. Nemes, A. Janossy, J.E. Fischer, Phys. Rev. B 62, R4845 (2000)

    Article  ADS  Google Scholar 

  13. H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, O. Zhou, Phys. Rev. Lett. 88, 015502 (2002)

    Article  ADS  Google Scholar 

  14. H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, O. Zhou, Phys. Rev. Lett. 88, 015502 (2002)

    Article  ADS  Google Scholar 

  15. B. Gao, C. Bower, J.D. Lorentzen, L. Fleming, A. Kleinhammes, X.P. Tang, L.E. McNeil, Y. Wu, O. Zhou, Chem. Phys. Lett. 327, 69 (2000)

    Article  ADS  Google Scholar 

  16. J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 85, 1706 (2000)

    Article  ADS  Google Scholar 

  17. A. Hansson, S. Stafstrom, Phys. Rev. B 72, 125420 (2005)

    Article  ADS  Google Scholar 

  18. G. Gao, T. Cagin, W.A. Goddard III, Phys. Rev. Lett. 80, 5556 (1998)

    Article  ADS  Google Scholar 

  19. H. Cheng, A.C. Cooper, J. Mater. Chem. 14, 715 (2004)

    Article  ADS  Google Scholar 

  20. J. Lu, S. Nagase, S. Zhang, L. Peng, Phys. Rev. B 69, 205304 (2004)

    Article  ADS  Google Scholar 

  21. W.I. Park, G.-C. Yi, J.-W. Kim, S.-M. Park, Appl. Phys. Lett. 82, 358 (2003)

    Article  ADS  Google Scholar 

  22. Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, F. Ren, Appl. Phys. Lett. 85, 3468 (2004)

    Article  ADS  Google Scholar 

  23. W.I. Park, J.S. Kim, G.-C. Yi, M.H. Bae, H.-J. Lee, Appl. Phys. Lett. 85, 5052 (2004)

    Article  ADS  Google Scholar 

  24. C.S. Rout, S.H. Krishna, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 418, 586 (2006)

    Article  ADS  Google Scholar 

  25. Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Appl. Phys. Lett. 84, 4556 (2004)

    Article  ADS  Google Scholar 

  26. X.H. Kong, X.M. Sun, X.L. Li, Y.D. Li, Mater. Chem. Phys. 82, 997 (2003)

    Article  Google Scholar 

  27. Hu Xu, R.Q. Zhang, X. Zhang, A.L. Rosa, T. Frauenheim, Nanotechnology 18, 485713 (2007)

    Article  Google Scholar 

  28. M.J. O’Conccel et al., Science 297, 593 (2002)

    Article  Google Scholar 

  29. Y. Miyamoto, B.D. Yu, Appl. Phys. Lett. 80, 586 (2002)

    Article  ADS  Google Scholar 

  30. A. Fathalian, J. Jalilian, Phys. Lett. A 374, 4695 (2010)

    Article  ADS  Google Scholar 

  31. A. Hansson, S. Stafstrom, Phys. Rev. B 72, 125420 (2005)

    Article  ADS  Google Scholar 

  32. J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 85, 1706 (2000)

    Article  ADS  Google Scholar 

  33. R. Moradian, S. Behzad, R. Chegel, Physica B 403, 3623 (2008)

    Article  ADS  Google Scholar 

  34. R. Moradian, S. Behzad, S. Azadi, Physica E 40, 3055 (2008)

    Article  ADS  Google Scholar 

  35. M. Zhao, Y. Xia, R.Q. Zhang, S.T. Lee, J. Chem. Phys. 122, 214707 (2005)

    Article  ADS  Google Scholar 

  36. W. Fan, H. Xu, A.L. Rosa, Th. Frauenheim, R.Q. Zhang, Phys. Rev. B 76, 073302 (2007)

    Article  ADS  Google Scholar 

  37. P. Erhart, K. Albe, A. Klein, Phys. Rev. B 73, 205203 (2006)

    Article  ADS  Google Scholar 

  38. Z.C. Tu, X. Hu, Phys. Rev. B. 74, 035434 (2006)

    Article  ADS  Google Scholar 

  39. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, J.H. Harding, J. Mater. Chem. 15, 139 (2005)

    Article  Google Scholar 

  40. Hu Xu, R.Q. Zhang, X. Zhang, A.L. Rosa, Th. Frauenheim, Nanotechnology 18, 485713 (2007)

    Article  Google Scholar 

  41. Y. Miyamoto, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 74, 2993 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fathalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathalian, A., Valedbagi, S. & Jalilian, J. First principle study of Li-intercalated (5, 5) ZnO nanotube bundles. Eur. Phys. J. B 83, 7 (2011). https://doi.org/10.1140/epjb/e2011-11009-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-11009-3

Keywords

Navigation